Диссертация (1150477), страница 22
Текст из файла (страница 22)
� P. 178.79. Neupane M., Xu S.-Y., Wray L. A., Petersen A., Shankar R., Alidoust N., Liu Chang, Fedorov A., Ji H., Allred J. M., Hor Y. S., Chang T.-R., Jeng H.-T., Lin H., Bansil A.,Cava R. J., Hasan M. Z. Topological surface states and Dirac point tuning in ternary topological insulators // Phys. Rev. B. � 2012. � Vol. 85. � P.
235406.80. Menshchikova T. V., Eremeev S. V., Koroteev Yu. M., Kuznetsov V. M., Chulkov E. V.Ternary compounds based on binary topological insulators as an efficient way for modifyingthe Dirac cone // JETP Letters. � 2011. � Vol. 93. � P. 15.81.
Niesner D., Fauster Th., Eremeev S. V., Menshchikova T. V., Koroteev Yu. M., Protogenov A. P., Chulkov E. V., Tereshchenko O. E., Kokh K. A., Alekperov O., Nadjafov A.,Mamedov N. Unoccupied topological states on bismuth chalcogenides // Phys. Rev. B. �2012. � Vol. 86. � P. 205403.82. Miyamoto K., Kimura A., Okuda T., Miyahara H., Kuroda K., Namatame H., Taniguchi M.,Eremeev S. V., Menshchikova T. V., Chulkov E. V., Kokh K. A., Tereshchenko O. E.
Topological surface states with persistent high spin polarization across the dirac point in Bi2 Te2 Seand Bi2 Se2 Te // Phys. Rev. Lett. � 2012. � Vol. 109. � P. 166802.83. Scanlon D. O., King P. D. C., Singh R. P., de la Torre A., Walker S. McKeown, Balakrishnan G., Baumberger F., Catlow C. R. A.
Controlling bulk conductivity in topologicalinsulators: Key role of anti-site defects // Advanced Materials. � 2012. � Vol. 24. � P. 2154.84. Zhang L., Yan Y., Wu H.-C., Yu D., Liao Z.-M. Gate-tunable tunneling resistance ingraphene/topological insulator vertical junctions // ACS Nano. � 2016. � Vol.
10. �P. 3816.10885. Hirahara T., Bihlmayer G., Sakamoto Y., Yamada M., Miyazaki H., Kimura S., Blügel S.,Hasegawa S. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2 Te3 // Phys.Rev. Lett. � 2011. � Vol. 107. � P. 166801.86. Jin K.-H., Yeom H. W., Jhi S.-H. Band structure engineering of topological insulator heterojunctions // Phys.
Rev. B. � 2016. � Vol. 93. � P. 075308.87. Bian G., Wang Z., Wang X.-X., Xu C., Xu S., Miller T., Hasan M. Z., Liu F., Chiang T.-C.Engineering electronic structure of a two-dimensional topological insulator Bi(111) bilayeron Sb nanofilms by quantum confinement effect // ACS Nano. � 2016. � Vol. 10. � P. 3859.88. Yeom H. W., Kim S.
H., Shin W. J., Jin K.-H., Park J., Kim T.-H., Kim J. S., Ishikawa H.,Sakamoto K., Jhi S.-H. Transforming a surface state of a topological insulator by a Bi cappinglayer // Phys. Rev. B. � 2014. � Vol. 90. � P. 235401.89. Govaerts K., Park K., De Beule C., Partoens B., Lamoen D. Effect of Bi bilayers on thetopological states of Bi2 Se3 : A first-principles study // Phys. Rev. B. � 2014. � Vol. 90. �P.
155124.90. He X., Zhou W., Wang Z. Y., Zhang Y. N., Shi J., Wu R. Q., Yarmoff J. A. Surfacetermination of cleaved Bi2 Se3 investigated by low energy ion scattering // Phys. Rev. Lett.� 2013. � Vol. 110. � P. 156101.91. Hewitt A. S., Wang J., Boltersdorf J., Maggard P. A., Dougherty D. B. Coexisting Bi andSe surface terminations of cleaved Bi2 Se3 single crystals // Journal of Vacuum Science &Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement,and Phenomena. � 2014.
� Vol. 32. � P. 04E103.92. Shokri R., Meyerheim H. L., Roy S., Mohseni K., Ernst A., Otrokov M. M., Chulkov E. V.,Kirschner J. Atomic and electronic structure of bismuth-bilayer-terminated Bi2 Se3 (0001)prepared by atomic hydrogen etching // Phys. Rev. B. � 2015. � Vol. 91. � P. 205430.93. Coelho P. M., Ribeiro G. A.
S., Malachias A., Pimentel V. L., Silva W. S., Reis D. D.,Mazzoni M. S. C., Magalhães-Paniago R. Temperature-induced coexistence of a conductingbilayer and the bulk-terminated surface of the topological insulator Bi2 Te3 // Nano Letters.� 2013. � Vol. 13. � P. 4517.94. Schouteden K., Govaerts K., Debehets J., Thupakula U., Chen T., Li Z., Netsou A., Song F.,Lamoen D., Van Haesendonck C., Partoens B., Park K. Annealing-induced Bi bilayer on109Bi2 Te3 investigated via quasi-particle-interference mapping // ACS Nano.
� 2016. � Vol. 10.� P. 8778.95. Hüfner S. Photoelectron spectroscopy. Principles and Applications. � Springer, 1995.96. Шикин A.M. Взаимодействие фотонов и электронов с твердым телом. � СПб.:ВВМ,2008.97. Mott N.F. The scattering of fast electrons by atomic nuclei // Proc. R. Soc. Lond. A. �1929. � Vol. 124. � P. 425.98. Оура К., Лившиц В.Г., Саранин А.А., Зотов А.В., Катаяма М. Введение в физикуповерхности / К. Оура, В.Г. Лившиц, А.А. Саранин, А.В. Зотов, М.
Катаяма. � М.:Наука, 2006.99. Tapilin V. M., Zemlyanov D. Y., Smirnov M. Y., Gorodetskii V. V. Angle resolved photoemission study and calculation of the electronic structure of the Pt(111) surface // SurfaceScience. � 1994. � Vol. 310. � P. 155.100. Di W., Smith K. E., Kevan S.
D. Angle-resolved photoemission study of the clean andhydrogen-covered Pt(111) surface // Phys. Rev. B. � 1992. � Vol. 45. � P. 3652.101. Garbe J., Kirschner J. Spin-dependent photoemission intensities from platinum (111) //Phys. Rev. B. � 1989. � Vol. 39. � P. 9859.102. Otero G., González C., Pinardi A. L., Merino P., Gardonio S., Lizzit S., Blanco-Rey M.,Van de Ruit K., Flipse C. F.
J., Méndez J., de Andrés P. L., Martı́n-Gago J. A. Orderedvacancy network induced by the growth of epitaxial graphene on Pt(111) // Phys. Rev. Lett.� 2010. � Vol. 105. � P. 216102.103. Gao M., Pan Y., Huang L., Hu H., Zhang L. Z., Guo H. M., Du S. X., Gao H.-J. Epitaxialgrowth and structural property of graphene on Pt(111) // Applied Physics Letters. � 2011.� Vol. 98. � P. 033101.104. Biberian J.
P., Somorjai G. A. On the determination of monolayer coverage by Auger electronspectroscopy. Application to carbon on platinum // Applications of Surface Science. � 1979.� Vol. 2. � P. 352.105. Land T. A., Michely T., Behm R. J., Hemminger J. C., Comsa G. STM investigation of singlelayer graphite structures produced on Pt(111) by hydrocarbon decomposition // SurfaceScience.
� 1992. � Vol. 264. � P. 261.110106. Tontegode A. Ya. Carbon on transition metal surfaces // Progress in Surface Science. �1991. � Vol. 38. � P. 201.107. Giovannetti G., Khomyakov P. A., Brocks G., Karpan V. M., van den Brink J., Kelly P. J.Doping graphene with metal contacts // Phys. Rev. Lett. � 2008. � Vol. 101. � P.
026803.108. Ginatempo B., Durham P. J., Gyorffy B. L., Temmerman W. M. Theory of spin-polarizedphotoemission from nonmagnetic metals: Platinum // Phys. Rev. Lett. � 1985. � Vol. 54.� P. 1581.109. Starodub E., Bostwick A., Moreschini L., Nie S., Gabaly F. E., McCarty K. F., Rotenberg E.In-plane orientation effects on the electronic structure, stability, and Raman scattering ofmonolayer graphene on Ir(111) // Phys.
Rev. B. � 2011. � Vol. 83. � P. 125428.110. Lacovig P., Pozzo M., Alfè D., Vilmercati P., Baraldi A., Lizzit S. Growth of dome-shapedcarbon nanoislands on Ir(111): The intermediate between carbidic clusters and quasi-freestanding graphene // Phys. Rev. Lett. � 2009. � Vol. 103. � P. 166101.111. Usachov D., Fedorov A., Vilkov O., Adamchuk V. K., Yashina L. V., Bondarenko L.,Saranin A.
A., Grüneis A., Vyalikh D. V. Experimental and computational insight intothe properties of the lattice-mismatched structures: Monolayers of h-BN and graphene onIr(111) // Phys. Rev. B. � 2012. � Vol. 86. � P. 155151.112. Kralj M., Pletikosić I., Petrović M., Pervan P., Milun M., N’Diaye A. T., Busse C.,Michely T., Fujii J., Vobornik I. Graphene on Ir(111) characterized by angle-resolved photoemission // Phys. Rev. B. � 2011.
� Vol. 84. � P. 075427.113. Pletikosić I., Kralj M., Pervan P., Brako R., Coraux J., N’Diaye A. T., Busse C., Michely T.Dirac cones and minigaps for graphene on Ir(111) // Phys. Rev. Lett. � 2009. � Vol. 102.� P. 056808.114. Sánchez-Barriga J., Varykhalov A., Marchenko D., Scholz M. R., Rader O. Minigap isotropyand broken chirality in graphene with periodic corrugation enhanced by cluster superlattices // Phys. Rev. B.
� 2012. � Vol. 85. � P. 201413.115. Petrović M., Šrut Rakić I., Runte S., Busse C., Sadowski J. T., Lazić P., Pletikosić I.,Pan Z. H., Milun M., Pervan P., Atodiresei N., Brako R., Šokčević D., Valla T., Michely T.,Kralj M. The mechanism of caesium intercalation of graphene // Nature Communications.� 2013. � Vol. 4. � P. 2772.111116.
Sicot M., Fagot-Revurat Y., Kierren B., Vasseur G., Malterre D. Copper intercalation atthe interface of graphene and Ir(111) studied by scanning tunneling microscopy // AppliedPhysics Letters. � 2014. � Vol. 105. � P. 191603.117. Jin L., Fu Q., Yang Y., Bao X. A comparative study of intercalation mechanism atgraphene/Ru(0001) interface // Surface Science. � 2013. � Vol. 617. � P. 81.118. Fei X., Zhang L., Xiao W., Chen H., Que Y., Liu L., Yang K., Du S., Gao H.-J.
Structuraland electronic properties of Pb- intercalated graphene on Ru(0001) // The Journal of PhysicalChemistry C. � 2015. � Vol. 119. � P. 9839.119. Shirley E. L., Terminello L. J., Santoni A., Himpsel F. J. Brillouin-zone-selection effects ingraphite photoelectron angular distributions // Phys. Rev. B. � 1995. � Vol. 51.