Диссертация (1150416), страница 16
Текст из файла (страница 16)
Nanostructured Fe3O4satellite gold nanoparticles to improve biomolecular detection // Sens. Actuators, B –2014. – Vol. 198. – P. 377-383.56. Liu X., Zhu H., Yang X. An amperometric hydrogen peroxide chemical sensorbased on graphene-Fe3O4 multilayer films modified ITO electrode // Talanta. – 2011. –Vol. 87. – P. 243-248.11357. Yu C., Wang Y., Wang L., Zhu Z., Bao N., Gu H. Nanostructured biosensors builtwith layer-by-layer electrostatic assembly of hemoglobin and Fe3O4@Pt nanoparticles //Colloids Surf., B. – 2013. – Vol. 103.
– P. 231-237.58. Pardieu E., Pronkin S., Dolci M., Dintzer T., Pichon B.P., Begin D., Pham-Huu C.,Schaaf P., Begin-Colin S., Boulmedais F. Hybrid layer-by-layer composites based on aconducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene forsupercapacitor application // J. Mater. Chem. A. – 2015. – Vol. 3, № 45. – P. 2287722885.59. Islam M.M., Cardillo D., Akhter T., Aboutalebi S.H., Liu H.K., Konstantinov K.,Dou S.X. Liquid-Crystal-Mediated Self-Assembly of Porous α-Fe2O3 Nanorods onPEDOT:PSS-Functionalized Graphene as a Flexible Ternary Architecture forCapacitive Energy Storage // Part. Part. Syst.
Char. – 2016. – Vol. 33, № 1. – P. 27-37.60. Yoon M., Kim Y., Cho J. Multifunctional Colloids with Optical, Magnetic, andSuperhydrophobic Properties Derived from Nucleophilic Substitution-Induced Layerby-Layer Assembly in Organic Media // ACS Nano.
– 2011. – Vol. 5, № 7. – P. 54175426.61. Wang X., Zhou S., Lai Y., Sun J., Shen J. Layer-by-layer deposition of magneticmicrogel films on plastic surfaces for the preparation of magnetic resonance visibilityenhancing coatings // J. Mater. Chem. – 2010. – Vol. 20, № 3. – P. 555-560.62.
Su H.-Y., Wu C.-Q., Li D.-Y., Ai H. Self-assembled superparamagneticnanoparticles as MRI contrast agents— A review // Chin. Phys. B. – 2015. – Vol. 24, №12. – P. 127506.63. Sun B., Zhang Y., Gu K.-J., Shen Q.-D., Yang Y., Song H. Layer-by-LayerAssembly of Conjugated Polyelectrolytes on Magnetic Nanoparticle Surfaces //Langmuir. – 2009.
– Vol. 25, № 10. – P. 5969-5973.64. Cao H., He J., Deng L., Gao X. Fabrication of cyclodextrin-functionalizedsuperparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layermethod // Appl. Surf. Sci. – 2009. – Vol. 255, № 18. – P. 7974-7980.11465. Caruso F., Spasova M., Susha A., Giersig M., Caruso R.A. MagneticNanocomposite Particles and Hollow Spheres Constructed by a Sequential LayeringApproach // Chem. Mater. – 2001. – Vol. 13, № 1. – P. 109-116.66. Caruso R.A., Susha A., Caruso F.
Multilayered Titania, Silica, and LaponiteNanoparticle Coatings on Polystyrene Colloidal Templates and Resulting InorganicHollow Spheres // Chem. Mater. – 2001. – Vol. 13, № 2. – P. 400-409.67. Lvov Y., Antipov A.A., Mamedov A., Möhwald H., Sukhorukov G.B.
UreaseEncapsulation in Nanoorganized Microshells // Nano Lett. – 2001. – Vol. 1, № 3. – P.125-128.68. Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery //Adv. Drug Deliv. Rev. – 2011. – Vol. 63, № 9. – P. 772-788.69. Liu P., Li X. Layer-by-Layer Engineered Superparamagnetic Polyelectrolyte HybridHollow Microspheres With High Magnetic Content as Drug Delivery System // Int. J.Polym. Mater. Polym. Biomater. – 2015.
– Vol. 64, № 16. – P. 857-864.70. Mu B., Liu P., Dong Y., Lu C., Wu X. Superparamagnetic pH-sensitive multilayerhybrid hollow microspheres for targeted controlled release // J. Polym. Sci., Part A:Polym. Chem. – 2010. – Vol. 48, № 14. – P. 3135-3144.71. Deng L., Li Q., Al-Rehili S.A., Omar H., Almalik A., Alshamsan A., Zhang J.,Khashab N.M. Hybrid Iron Oxide–Graphene Oxide–Polysaccharides Microcapsule: AMicro-Matryoshka for On-Demand Drug Release and Antitumor Therapy In Vivo //ACS Appl. Mater. Interfaces.
– 2016. – Vol. 8, № 11. – P. 6859-6868.72. Yoon H.-J., Lim T. G., Kim J.-H., Cho Y. M., Kim Y.S., Chung U.S., Kim J. H.,Choi B.W., Koh W.-G., Jang W.-D. Fabrication of Multifunctional Layer-by-LayerNanocapsules toward the Design of Theragnostic Nanoplatform // Biomacromolecules.– 2014.
– Vol. 15, № 4. – P. 1382-1389.73. Lee D., Cohen R.E., Rubner M.F. Heterostructured Magnetic Nanotubes //Langmuir. – 2007. – Vol. 23, № 1. – P. 123-129.74. Xie L., Ma S., Yang Q., Lan F., Wu Y., Gu Z. Double-sided coordination assembly:superparamagnetic composite microspheres with layer-by-layer structure for proteinseparation // RSC Adv. – 2014. – Vol.
4, № 3. – P. 1055-1061.11575. Gump J.R., Wagner W.F., Schreyer J.M. Preparation and Analysis of BariumFerrate(VI) // Anal. Chem. – 1954. – Vol. 26, № 12. – P. 1957-1957.76. Firouzabadi H., Mohajer D., Entezari M., Moghaddam. Silver Ferrate Ag 2FeO4, AnEfficient and Selective Oxidizing Agent for the Oxidation of Benzylic and AllylicAlcohols to Their Corresponding Carbonyl Compounds in Aprotic Organic Solvents //Synth.
Commun. – 1986. – Vol. 16, № 2. – P. 211-223.77. Kopelev N.S., Perfiliev Y.D., Kiselev Y.M. Mössbauer study of sodium ferrates(IV)and (VI) // J. Radioanal. Nucl. Chem. – 1992. – Vol. 162, № 2. – P. 239-251.78. Audette R.J., Quail J.W., Smith P.J. Ferrate (VI) ion, a novel oxidizing agent //Tetrahedron Lett. – 1971.
– Vol. 12, № 3. – P. 279-282.79. Rosell C.A.O. THE FERRATES.1 // JACS. – 1895. – Vol. 17, № 10. – P. 760-769.80. Martinez-Tamayo E., Beltrán-Porter A., Beltrán-Porter D. Iron compounds in highoxidation states // Thermochim. Acta. – 1986. – Vol. 97. – P. 243-255.81. Lei B., Zhou G., Cheng T., Du J. Synthesis of potassium ferrate by chemical dryoxidation and its properties in degradation of methyl orange // Asian J.
Chem. – 2013. –Vol. 25, № 1. – P. 27-31.82. Denvir A., Pletcher D. Electrochemical generation of ferrate Part I: Dissolution ofan iron wool bed anode // J. Appl. Electrochem. – 1996. – Vol. 26, № 8. – P. 815-822.83. Bouzek K., Roušar I. Influence of anode material on current yield during ferrate(VI)production by anodic iron dissolution: Part III: Current efficiency during anodicdissolution of pure iron to ferrate(VI) in concentrated alkali hydroxide solutions // J.Appl. Electrochem.
– 1997. – Vol. 27, № 6. – P. 679-684.84. Benová M., Híveš J., Bouzek K., Sharma V.K. Electrochemical Ferrate(VI)Synthesis: A Molten Salt Approach // Ferrates: American Chemical Society, 2008. – P.68-80.85. Thompson G.W., Ockerman L.T., Schreyer J.M. Preparation and Purification ofPotassium Ferrate. VI // JACS. – 1951. – Vol. 73, № 3. – P. 1379-1381.86. Schreyer J.M.
Higher valence compounds of iron // Oregon State University,Corvallis, Oregon. – 1948.11687. Hrostowski H.J., Scott A.B. The Magnetic Susceptibility of Potassium Ferrate // J.Chem. Phys. – 1950. – Vol. 18, № 1. – P. 105-107.88. Li C., Li X.Z., Graham N. A study of the preparation and reactivity of potassiumferrate // Chemosphere. – 2005. – Vol. 61, № 4. – P.
537-543.89. Graham N., Jiang C.-c., Li X.-Z., Jiang J.-Q., Ma J. The influence of pH on thedegradation of phenol and chlorophenols by potassium ferrate // Chemosphere. – 2004.– Vol. 56, № 10. – P. 949-956.90. Неорганическая химия: в 3 т. // под ред. Ю.Д. Третьякова. Т.3, Кн. 2. – М.:Издательский центр «Академия», 2007. – С. 53.91. Schroyer J.M., Ockerman L.T. Stability of Ferrate(VI) Ion in Aqueous Solution //Anal. Chem. – 1951.
– Vol. 23, № 9. – P. 1312-1314.92. Kolar M., Novak P., Siskova K. M., Machala L., Malina O., Tucek J., Sharma V. K.,Zboril R. Impact of inorganic buffering ions on the stability of Fe(VI) in aqueoussolution: role of the carbonate ion // PCCP. – 2016. – Vol. 18, № 6. – P. 4415-4422.93. Wood R. H.
The Heat, Free Energy and Entropy of the Ferrate(VI) Ion // JACS. –1958. – Vol. 80, № 9. – P. 2038-2041.94. Delaude L., Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)// J. Org. Chem. – 1996. – Vol. 61, № 18. – P. 6360-6370.95. Zhang Z.-y., Xu X.-c.
Nondestructive covalent functionalization of carbonnanotubes by selective oxidation of the original defects with K2FeO4 // Applied SurfaceScience. – 2015. – Vol. 346. – P. 520-527.96. Sharma V.K., Rivera W., Smith J.O., O'Brien B. Ferrate(VI) Oxidation of AqueousCyanide // Environ. Sci. Technol. – 1998. – Vol. 32, № 17. – P. 2608-2613.97.
Costarramone N., Kneip A., Castetbon A. Ferrate(VI) oxidation of cyanide in water// Environ Technol. – 2004. – Vol. 25, № 8. – P. 945-55.98. Tiwari D., Kim H.-U., Choi B.-J., Lee S.-M., Kwon O.-H., Choi K.-M., Yang J.-K.Ferrate(VI): A green chemical for the oxidation of cyanide in aqueous/waste solutions //J. Environ. Sci. Heal.
A. – 2007. – Vol. 42, № 6. – P. 803-810.99. Yu M.-R., Chang Y.-Y., Keller A. A., Yang J.-K. Application of ferrate for thetreatment of metal-sulfide // J. Environ. Manage. – 2013. – Vol. 116. – P. 95-100.117100. Anquandah G.A.K., Sharma V.K., Knight D.A., Batchu S.R., Gardinali P.R.Oxidation of Trimethoprim by Ferrate(VI): Kinetics, Products, and AntibacterialActivity // Environ. Sci.
Technol. – 2011. – Vol. 45, № 24. – P. 10575-10581.101. Kwon J.H., Kim I.K., Park K.Y., Kim Y.D., Cho Y.H. Removal of phosphorus andcoliforms from secondary effluent using ferrate(VI) // KSCE J. Civil Eng. – 2014. –Vol. 18, № 1. – P. 81-85.102. Stupin D.Y., Ozernoi M.I.