Диссертация (1150176), страница 21
Текст из файла (страница 21)
P. 161–245.53.Amiri M., Jankeje K., Albani J.R. Characterization of human serum albumin forms withpH. Fluorescence lifetime studies. // J. Pharm. Biomed. Anal. 2010. Vol. 51, № 5. P.1097–1102.54.Cascão Pereira L.G., Théodoly O., Blanch H.W., et al. Dilatational rheology of BSAconformers at the air/water interface // Langmuir. 2003. Vol. 19, № 8. P. 2349–2356.55.Carter D.C., Chang B., Ho J.X., et al. Preliminary Crystallographic Studies of FourCrystal forms of Serum Albumin // Eur.
J. Biochem. 1994. Vol. 226, № 3. P. 1049–1052.12856.Zhmurov A., Kononova O., Litvinov R.I., et al. Mechanical transition from α-helicalcoiled coils to β-sheets in fibrin(ogen). // J. Am. Chem. Soc. 2012. Vol. 134, № 50. P.20396–20402.57.Hassan N., Barbosa L.R.S., Itri R., et al. Fibrinogen stability under surfactant interaction.// J.
Colloid Interface Sci. 2011. Vol. 362, № 1. P. 118–126.58.Jung S.Y., Lim S.M., Albertorio F., et al. The Vroman Effect: A Molecular LevelDescription of Fibrinogen Displacement // J. Am. Chem. Soc. 2003. Vol. 125, № 14. P.12782–12786.59.Dickinson E. Colloid science of mixed ingredients // Soft Matter. 2006. Vol. 2, № 8. P.642–652.60.Wong D.W., Camirand W.M., Pavlath A.E. Structures and functionalities of milkproteins. // Crit. Rev. Food Sci. Nutr.
1996. Vol. 36, № 8. 807-844 p.61.Horne D. Casein structure, self-assembly and gelation // Curr. Opin. Colloid InterfaceSci. 2002. Vol. 7. P. 456–461.62.Stumpe M.C., Grubmüller H. Interaction of urea with amino acids: Implications forurea-induced protein denaturation // J. Am. Chem. Soc. 2007. Vol. 129, № 26. P. 16126–16131.63.Rezus Y.L.A., Bakker H.J. Effect of urea on the structural dynamics of water.
// Proc.Natl. Acad. Sci. USA. 2006. Vol. 103, № 49. P. 18417–18420.64.Tanford C. Protein Denaturation. Part C. Theoretical Models for The Mechanism ofDenaturation // Adv. Protein Chem. 1970. Vol. 24. P. 1–95.65.Smith J.S., Scholtz J.M. Guanidine hydrochloride unfolding of peptide helices:Separation of denaturant and salt effects // Biochemistry. 1996.
Vol. 35, № 96. P. 7292–7297.66.Soper A.K., Castner E.W., Luzar A. Impact of urea on water structure: a clue to itsproperties as a denaturant? // Biophys. Chem. 2003. Vol. 105, № 2-3. P. 649–666.67.Pace C.N., Grimsley G.R., Scholtz J.M. Protein Science Encyclopedia / ed. Fersht A.R.Weinheim, Germany: Wiley-VCH, 2008.68.Hédoux A., Krenzlin S., Paccou L. Influence of urea and guanidine hydrochloride onlysozyme stability and thermal denaturation; a correlation between activity, proteindynamics and conformational changes // Phys. Chem. Chem. Phys. 2010.
Vol. 12. P.13189–13196.69.Dempsey C.E., Piggot T.J., Mason P.E. Dissecting contributions to the denaturantsensitivities of proteins. // Biochemistry. 2005. Vol. 44, № 2. P. 775–781.12970.Tanford C. Isothermal Unfolding of Globular Proteins in Aqueous Urea Solutions // J.Am. Chem. Soc. 1964. Vol. 86, № 3. P. 2050–2059.71.Modig K., Kurian E., Prendergast F.G., et al. Water and urea interactions with the nativeand unfolded forms of a beta-barrel protein. // Protein Sci.
2003. Vol. 12. P. 2768–2781.72.Zou Q., Bennion B.J., Daggett V., et al. The Molecular Mechanism of Stabilization ofProteins by TMAO and Its Ability to Counteract the Effects of Urea // J. Am. Chem.Soc. 2002. Vol. 124, № 7. P. 1192–1202.73.Tsai J., Gerstein M., Levitt M. Keeping the shape but changing the charges: Asimulation study of urea and its iso-steric analogs // J. Chem. Phys.
1996. Vol. 104, №23. P. 9417–9430.74.Tirado-Rives J., Orozco M., Jorgensen W.L. Molecular dynamics simulations of theunfolding of barnase in water and 8 M aqueous urea // Biochemistry. 1997. Vol. 36, №97. P. 7313–7329.75.Sokoli F., Idrissi A., Perera A. Concentrated aqueous urea solutions: A moleculardynamics study of different models // J. Chem. Phys. 2002. Vol.
116, № 4. P. 1636–1646.76.Bennion B.J., Daggett V. The molecular basis for the chemical denaturation of proteinsby urea. // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, № 9. P. 5142–5147.77.Mason P.E., Neilson G.W., Dempsey C.E., et al. The hydration structure of guanidiniumand thiocyanate ions: implications for protein stability in aqueous solution. // Proc. Natl.Acad.
Sci. USA. 2003. Vol. 100, № 8. P. 4557–4561.78.Mason P.E., Neilson G.W., Enderby J.E., et al. The structure of aqueous guanidiniumchloride solutions // J. Am. Chem. Soc. 2004. Vol. 126. P. 11462–11470.79.Pike A.C., Acharya K.R. A structural basis for the interaction of urea with lysozyme. //Protein Sci. 1994. Vol. 3. P.
706–710.80.Dunbar J., Yennawar H.P., Banerjee S., et al. The effect of denaturants on proteinstructure. // Protein Sci. 1997. Vol. 6, № 8. P. 1727–1733.81.Hédoux A., Ionov R., Willart J.F., et al. Evidence of a two-stage thermal denaturationprocess in lysozyme: A Raman scattering and differential scanning calorimetryinvestigation // J.
Chem. Phys. 2006. Vol. 124. P. 014703.82.Santra M.K., Banerjee A., Krishnakumar S.S., et al. Multiple-probe analysis of foldingand unfolding pathways of human serum albumin. Evidence for a framework mechanismof folding. // Eur. J. Biochem. 2004. Vol. 271, № 9. P. 1789–1797.13083.Tanford C., Aune K.C.
Thermodynamics of the denaturation of lysozyme by guanidinehydrochloride. III. Dependence on temperature // Biochemistry. 1970. Vol. 9, № 2. P.206–211.84.Lindgren M., Sparrman T., Westlund P. A combined molecular dynamic simulation andurea 14N NMR relaxation study of the urea-lysozyme system. // Spectrochim. Acta. A.Mol. Biomol. Spectrosc.
2010. Vol. 75. P. 953–959.85.Johnson P., Mihalyi E. Physicochemical studies of bovine fibrinogen I. Molecularweight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5M guanidine· HCl solution // Biochim. Biophys. Acta. 1965. Vol. 2, № 1965. P. 467–475.86.Mihalyi E. Physicochemical studies of bovine fibrinogen.
IV. Ultraviolet absorption andits relation to the structure of the molecule // Biochemistry. 1968. Vol. 7, № 1. P. 208–223.87.Johnson P., Mihalyi E. Physicochemical studies of bovine fibrinogen II. Depolarizationof fluorescence studies // Biochim. Biophys. Acta. 1965. Vol. 2, № 102. P. 476–486.88.Mihalyi E. Physicochemical studies of bovine fibrinogen III. Optical rotation of thenative and denatured molecule // Biochim.
Biophys. Acta. 1965. Vol. 102, № 2. P. 487–499.89.Flora K., Brennan J.D., Baker G.A., et al. Unfolding of acrylodan-labeled human serumalbumin probed by steady-state and time-resolved fluorescence methods. // Biophys. J.1998. Vol. 75, № 2. P. 1084–1096.90.Ahmad B., Ahmed M.Z., Haq S.K., et al. Guanidine hydrochloride denaturation ofhuman serum albumin originates by local unfolding of some stable loops in domain III.// Biochim.
Biophys. Acta. 2005. Vol. 1750, № 1. P. 93–102.91.Viallet P.M., Vo-Dinh T., Ribou A.C., et al. Native fluorescence and Mag-indo-1protein interaction as tools for probing unfolding and refolding sequences of the bovineserum albumin subdomain in the presence of guanidine hydrochloride // J. ProteinChem. 2000. Vol. 19, № 6. P. 431–439.92.Galantini L., Leggio C., Pavel N.V. Human serum albumin unfolding: a small-angle Xray scattering and light scattering study. // J. Phys.
Chem. B. 2008. Vol. 112, № 48. P.15460–15469.93.Chodankar S., Aswal V., Kohlbrecher J., et al. Structural evolution during proteindenaturation as induced by different methods // Phys. Rev. E. 2008. Vol. 77, № 3. P.031901.13194.Das A., Chitra R., Choudhury R.R., et al. Structural changes during the unfolding ofBovine serum albumin in the presence of urea: A small-angle neutron scattering study //Pramana.
2004. Vol. 63, № 2. P. 363–368.95.Ma B., Tie Z., Zou D., et al. Urea- and Thermal-Induced Unfolding of Bovine SerumAlbumin // Mod. Phys. Lett. B. 2006. Vol. 20, № 29. P. 1909–1916.96.Aswal V., Chodankar S., Kohlbrecher J., et al. Small-angle neutron scattering study ofprotein unfolding and refolding // Phys. Rev. E. 2009. Vol. 80, № 1. P. 011924.97.Muzammil S., Kumar Y., Tayyab S. Anion-induced stabilization of human serumalbumin prevents the formation of intermediate during urea denaturation // ProteinsStruct.
Funct. Genet. 2000. Vol. 40, № 2. P. 29–38.98.Leggio C., Galantini L., Konarev P. V, et al. Urea-induced denaturation process ondefatted human serum albumin and in the presence of palmitic acid. // J. Phys. Chem. B.2009. Vol. 113, № 37. P. 12590–12602.99.Tanford C. Hydrophobic free energy, micelle formation and the association of proteinswith amphiphiles.
// J. Mol. Biol. 1972. Vol. 67. P. 59–74.100. Reynolds J.A., Tanford C. The gross conformation of protein-sodium dodecyl sulfatecomplexes. // J. Biol. Chem. 1970. Vol. 245, № 19. P. 5161–5165.101. Jones M.N., Manley P. Binding of n-alkyl sulphates to lysozyme in aqueous solution // J.Chem. Soc. Faraday Trans. 1979. Vol. 75. P. 1736–1744.102. Jones M.N., Manley P. Interaction between lysozyme and n-alkyl sulphates in aqueoussolution // J. Chem.
Soc. Faraday Trans. 1980. Vol. 76, № 57. P. 654.103. Stenstam A., Montalvo G., Grillo I., et al. Small Angle Neutron Scattering Study ofLysozyme−Sodium Dodecyl Sulfate Aggregates // J. Phys. Chem. B. 2003. Vol. 107, №44. P. 12331–12338.104. Hamill A.C., Wang S.-C., Lee C.T. Probing lysozyme conformation with light reveals anew folding intermediate. // Biochemistry.
2005. Vol. 44, № 46. P. 15139–15149.105. Narayanan J., Abdul Rasheed A.S., Bellare J.R. A small-angle X-ray scattering study ofthe structure of lysozyme-sodium dodecyl sulfate complexes. // J. Colloid Interface Sci.2008. Vol. 328, № 1. P. 67–72.106. Sun M.L., Tilton R.D. Adsorption of protein/surfactant complexes at the air/aqueousinterface // Colloids Surf., B. 2001. Vol.