Диссертация (1150176), страница 20
Текст из файла (страница 20)
В то жевремя добавки ПСС к растворам фибриногена сильно влияют на кинетику адсорбции,даже когда компоненты одноименно заряжены. При значениях рН, соответствующихпротивоположному заряду компонентов, в растворе образуются мезоскопическиеагрегаты, что приводит к уменьшению величины адсорбции и скорости измененияповерхностных свойств. ПДАДМАХ взаимодействует с фибриногеном, только когдаэтот белок противоположно заряжен.9.Применение кинетического уравнения адсорбции для описания адсорбциикомплексов БСА/ПСС позволило оценить эффективный заряд адсорбирующихся глобул.Полученныезначенияудовлетворительносогласуютсясрезультатамипоэлектрофоретической подвижности БСА в водном растворе и показывают, чтокинетические единицы представляют глобулярный комплекс белок/полиэлектролитвместе со связанными противоионами.1241.Cooper C.L., Dubin P.L., Kayitmazer A.B., et al.
Polyelectrolyte–protein complexes //Curr. Opin. Colloid Interface Sci. 2005. Vol. 10, № 1-2. P. 52–78.2.Kizilay E., Kayitmazer A.B., Dubin P.L. Complexation and coacervation ofpolyelectrolytes with oppositely charged colloids. // Adv. Colloid Interface Sci. 2011.Vol. 167, № 1-2. P. 24–37.3.Cousin F., Gummel J., Combet S., et al. The model Lysozyme-PSSNa system forelectrostatic complexation: Similarities and differences with complex coacervation. //Adv. Colloid Interface Sci. 2011. Vol. 167, № 1-2. P.
71–84.4.Anikin K., Röcker C. Polyelectrolyte-mediated protein adsorption: fluorescent proteinbinding to individual polyelectrolyte nanospheres // J. Phys. Chem. B. 2005. Vol. 109,№ 12. P. 5418–5420.5.Yu A., Caruso F. Thin Films of Polyelectrolyte-Encapsulated Catalase Microcrystals forBiosensing // Anal.
Chem. 2003. Vol. 75, № 13. P. 3031–3037.6.Ram M.K., Bertoncello P., Ding H., et al. Cholesterol biosensors prepared by layer-bylayer technique // Biosens. Bioelectron. 2001. Vol. 16, № 9-12. P. 849–856.7.Dainiak M.B., Muronetz V.I., Izumrudov V.A., et al. Production of Fab fragments ofmonoclonal antibodies using polyelectrolyte complexes. // Anal.
Biochem. 2000. Vol.277, № 1. P. 58–66.8.Mattison K.W., Brittain I.J., Dubin P.L. Protein-Polyelectrolyte Phase Boundaries //Biotechnol. Prog. 1995. Vol. 11, № 6. P. 632–637.9.Bromberg L., Ron E. Temperature-responsive gels and thermogelling polymer matricesfor protein and peptide delivery // Adv. Drug Deliv. Rev. 1998. Vol. 31.
P. 197–221.10.Prakash S., Matouschek A. Protein unfolding in the cell. // Trends Biochem. Sci. 2004.Vol. 29, № 11. P. 593–600.11.Chodankar S., Aswal V., Kohlbrecher J., et al. Structural study of coacervation inprotein-polyelectrolyte complexes // Phys. Rev. E. 2008. Vol. 78, № 3. P. 031913.12.Ivinova O.N., Izumrudov V.A., Muronetz V.I., et al. Influence of ComplexingPolyanions on the Thermostability of Basic Proteins // Macromol. Biosci.
2003. Vol. 3,№ 34. P. 210–215.13.Xia J., Dubin P.L., Kim Y., et al. Electrophoretic and quasi-elastic light scattering ofsoluble protein-polyelectrolyte complexes // J. Phys. Chem. 1993. Vol. 97, № 17. P.4528–4534.14.Li Y., Mattison K., Dubin P. Light scattering studies of the binding of bovine serumalbumin to a cationic polyelectrolyte // Biopolymers. 1996. Vol. 38. P. 527–533.12515.Jiang H.L., Zhu K.J. Polyanion/gelatin complexes as pH-sensitive gels for controlledprotein release // J. Appl. Polym.
Sci. 2001. Vol. 80, № 12. P. 1416–1425.16.Xia J., Dubin P.L., Kokufuta E., et al. Light scattering, CD, and ligand binding studies offerrihemoglobin-polyelectrolyte complexes. // Biopolymers. 1999. Vol. 50, № 2. P. 153–161.17.Makhatadze G., Privalov P. Protein interactions with urea and guanidinium chloride: acalorimetric study // J. Mol. Biol. 1992. Vol. 226, № 15. P. 491–505.18.Zangi R., Zhou R., Berne B.J. Urea’s Action on Hydrophobic Interactions // JACS.2009.
Vol. 131, № 21. P. 1535–1541.19.Canchi D., Paschek D., Garc a A. Equilibrium study of protein denaturation by urea //JACS. 2010. Vol. 132, № 22. P. 2338–2344.20.England J., Haran G. Role of solvation effects in protein denaturation: fromthermodynamics to single molecules and back // Annu.
Rev. Phys. Chem. 2011. Vol. 62,№ 11. P. 257–277.21.Vasilescu M., Angelescu D., Almgren M., et al. Interactions of globular proteins withsurfactants studied with fluorescence probe methods // Langmuir. 1999. Vol. 15, № 27.P. 2635–2643.22.Kelley D., McClements D.J.
Interactions of bovine serum albumin with ionic surfactantsin aqueous solutions // Food Hydrocoll. 2003. Vol. 17. P. 73–85.23.Otzen D. Protein-surfactant interactions: a tale of many states. // Biochim. Biophys.Acta. 2011. Vol. 1814, № 5. P. 562–591.24.Turro N., Lei X. Spectroscopic probe analysis of protein-surfactant interactions: theBSA/SDS system // Langmuir. 1995. Vol. 5, № 10. P. 2525–2533.25.Bhuyan A.K. On the mechanism of SDS-induced protein denaturation.
// Biopolymers.2010. Vol. 93, № 2. P. 186–199.26.Noskov B.A., Mikhailovskaya A.A., Lin S.-Y., et al. Bovine serum albumin unfolding atthe air/water interface as studied by dilational surface rheology. // Langmuir. 2010. Vol.26, № 22. P. 17225–17231.27.Yano Y.F. Kinetics of protein unfolding at interfaces. // J.
Phys. Condens. Matter. 2012.Vol. 24, № 50. P. 503101.28.Beverung C.J., Radke C.J., Blanch H.W. Protein adsorption at the oil/water interface:characterization of adsorption kinetics by dynamic interfacial tension measurements //Biophys. Chem. 1999.
Vol. 81, № 1. P. 59–80.12629.Rao C.S., Damodaran S. Is Surface Pressure a Measure of Interfacial Water Activity?Evidence from Protein Adsorption Behavior at Interfaces // Langmuir. 2000. Vol. 16, №24. P. 9468–9477.30.Graham D., Phillips M. Proteins at liquid interfaces: I. Kinetics of adsorption and surfacedenaturation // J. Colloid Interface Sci. 1979. Vol. 70, № 3. P. 403–414.31.Lu J.R., Su T.J., Thomas R.K., et al.
Structural conformation of lysozyme layers at theair/water interface studied by neutron reflection // J. Chem. Soc. Faraday Trans. 1998.Vol. 94, № 94. P. 3279–3287.32.Lu J.R., Su T.J., Thomas R.K. Structural Conformation of Bovine Serum AlbuminLayers at the Air-Water Interface Studied by Neutron Reflection. // J. Colloid InterfaceSci. 1999. Vol. 213, № 2. P.
426–437.33.Lu J.R., Su T.J., Howlin B.J. The Effect of Solution pH on the Structural Conformationof Lysozyme Layers Adsorbed on the Surface of Water // J. Phys. Chem. B. 1999. Vol.103, № 28. P. 5903–5909.34.Taylor D.J.F., Thomas R.K., Penfold J. Polymer/surfactant interactions at the air/waterinterface. // Adv. Colloid Interface Sci. 2007.
Vol. 132, № 2. P. 69–110.35.Perriman A.W., Henderson M.J., Holt S.A., et al. Effect of the air-water interface on thestability of b-lactoglobulin // J. Phys. Chem. B. 2007. Vol. 111, № 48. P. 13527–13537.36.Noskov B.A., Akentiev A.V., Loglio G., et al. Dynamic surface properties of solutionsof poly (ethylene oxide) and polyethylene glycols // J. Phys. Chem. B. 2000. Vol. 104,№ 33. P. 7923–7931.37.Noskov B.A., Akentiev A.V., Bilibin A.Y., et al. Dilational surface viscoelasticity ofpolymer solutions // Adv. Colloid Interface Sci.
2003. Vol. 104, № 1-3. P. 245–271.38.Bykov A.G., Lin S.-Y., Loglio G., et al. Kinetics of Adsorption Layer Formation inSolutions of Polyacid/Surfactant Complexes // J. Phys. Chem. C. 2009. Vol. 113, № 14.P. 5664–5671.39.Latnikova A.V., Lin S.-Y., Loglio G., et al. Impact of Surfactant Additions on DynamicProperties of β-Casein Adsorption Layers // J. Phys. Chem. C. 2008.
Vol. 112, № 15. P.6126–6131.40.Mikhailovskaya A.A., Noskov B.A., Nikitin E.A., et al. Dilational surface viscoelasticityof protein solutions. Impact of urea // Food Hydrocoll. 2014. Vol. 34. P. 98–103.41.Noskov B.A., Latnikova A.V., Lin S.-Y., et al. Dynamic Surface Elasticity of β-CaseinSolutions during Adsorption // J. Phys. Chem. C. 2007. Vol. 111, № 45. P. 16895–16901.12742.Шульц Г., Ширмер Р. Принципы структурной организации белков. Москва:“Мир,” 1982.43.Pauling L., Corey R.B., Branson H.R. The structure of proteins; two hydrogen-bondedhelical configurations of the polypeptide chain. // Proc.
Natl. Acad. Sci. USA. 1951. Vol.37. P. 205–211.44.Chothia C. Principles that determine the structure of proteins // Annu. Rev. Biochem.1984. Vol. 53. P. 537–572.45.Волькенштейн М.В. Биофизика. Москва: “Наука,” 1988.46.Moren A.K., Khan A. Phase Equilibria of an anionic surfactant (Sodium DodecylSulfate) and an Oppositely Charged Protein (Lysozyme) in Water // Langmuir. 1995.Vol. 11, № 10.
P. 3636–3643.47.Goodsell D.S., Olson A.J. Soluble proteins: Size, shape and function // TIBS. 1993. Vol.18, № 3. P. 65–68.48.Privalov P., Medved L. Domains in the Fibrinogen // J. Mol. Biol. 1982. Vol. 159. P.665–683.49.Blake C.C., Koenig D.F., Mair G.A., et al. Structure of hen egg-white lysozyme //Nature. 1965. Vol.
206, № 4986. P. 757–761.50.Canfield R., Liu A. The disulfide bonds of egg white lysozyme (muramidase) // J. Biol.Chem. 1965. Vol. 240, № 5. P. 1997–2002.51.Haynes C.A., Sliwinsky E., Norde W. Structural and electrostatic properties of globularproteins at a polystyrene-water interface // J. Colloid Interface Sci. 1994. Vol. 164. P.394–409.52.Peters T. Serum albumin // Adv. Protein Chem. 1985. Vol. 37.