Диссертация (1149751), страница 18
Текст из файла (страница 18)
J. Eng. Sci. 37,1089–1140.41. Bo, Z., Lagoudas, D. C., 1999. Thermomechanical modeling of polycrystallineSMAs under cyclic loading, Part II: material characterization and experimentalresults for a stable transformation cycle // International Journal of EngineeringScience 37 (1999) 1141-117342. Bo, Z., Lagoudas, D.
C., 1999. Thermomechanical modeling of polycrystallineSMAs under cyclic loading, Part III: Evolution of plastic strains and two-waymemory effect. Int. J. Eng. Sci. 37, 1175–1204.43. Bo, Z., Lagoudas, D. C., 1999. Thermomechanical modeling of polycrystallineSMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops. Int. J.
Eng.Sci. 37, 1205–1249.11244. Lagoudas, D. C., Bo, Z., 1999. Thermomechanical modeling of polycrystallineSMAs under cyclic loading, Part II: Material characterization and experimentalresults for a stable transformation cycle. Int. J. Eng. Sci. 37, 1205–1249.45.
Bricknell R.H., Melton K.N. Thin foil electron microscope observations on NiTiCushape memory alloys. Metallurgical and Materials Transactions A, 1980, vol. 11,№9, p. 1541-1546.46. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler. On the multiplication ofdislocations during martensitic transformations in NiTi shape memory alloys // ActaMater. 2010. Vol. 58, № 5. P.
1850–1860.47. K.N. Melton and O. Mercier, Fatigue of NiTi thermoelastic martensites, ActaMetallurgica, V-27, 137-144 (1979)48. K.N. Melton and O. Mercier, The Effect of the Martensitic Phase Transformation onthe Low Cycle Fatigue Behaviour of Polycrystalline Ni-Ti and Cu-Zn-Al Alloys //Materials Science and Engineering, 40 (1979) 81 - 8749. K.N. Melton and O.
Mercier Fatigue life of CuZnAl alloys // Scripta MetallurgicaVol. 13, pp. 73-75, 197950. J.L. McNichols and P.C. Brooks, NiTi fatigue behavior // Journal of AppliedPhysics, V-52, 7442-7444 (1981)51. D. C. Lagoudas, C. Li, D. A. Miller, L. Rong, Thermomechanical transformationfatigue of SMA actuators // Proceedings of SPIE, vol.
3992, pp 420-429 (2000)52. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Yinong Liu Fatigue life of Ti–50at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires // Materials Scienceand Engineering A273–275 (1999) 658–66353. G. Eggeler, E. Hornbogen, A. Yawny1, A. Heckmann, M. Wagner Structural andfunctional fatigue of NiTi shape memory alloys // Materials Science and EngineeringA 378 (2004) 24–3354.
K. Gall, H.J. Maier Cyclic deformation mechanisms in precipitated NiTi shapememory alloys // Acta Materialia 50 (2002) 4643–465711355. Беляев С.П., Кузьмин С.Л., Лихачев В.А., Ковалев С.М. Деформация иразрушение никелида титана под действием теплосмен и напряжения //Физика металлов и металловедение, 1987, т. 63, вып.
5, с. 1017-1023.56. N. Siredey, A. Hautcoeur, A. Eberhardt Lifetime of superelastic Cu–Al–Be singlecrystal wires under bending fatigue // Materials Science and Engineering A 396(2005) 296–30157. O.W. Bertacchini, D.C. Lagoudas, E. Patoor Fatigue life characterization of shapememory alloys undergoing thermomechanical cyclic loading // Proc. SPIE 5053,Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics,612-624 (August 12, 2003); doi:10.1117/12.50820758. Волков А.Е., Евард М.Е., Бобелева О.В. Моделирование накопления дефектови повреждаемости в процессе пластической деформации мартенсита в сплавахс памятью формы. // Материаловедение, 2006. № 12. С.2-559.
Liang, C., Rogers, C., 1990. One dimensional thermomechanical constitutiverelations for shape memory materials. J. Intell. Mater. Syst. Struct. 1, 207–234.60. Brinson, L.C., 1993. One dimensional constitutive behaviour of shape memoryalloys: thermomechanical derivation with non-constant material functions. J. Intell.Mater. Syst.
Struct. 4, 229–242.61. Raniecki, B., Lexcellent, C., 1994. RL-models of pseudoelasticity and theirspecification for some shape memory solids. Eur. J. Mech. A/Solids 13 (1), 21–50.62. Boyd, J., Lagoudas, D.C., 1996. A thermodynamical constitutive model for shapememory materials. Part i: The monolithic shape memory alloy. Int. J. Plasticity 12(6), 805–842.63. Lexcellent, C., Leclercq, S., 1996.
A general macroscopic description of thethermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 44 (6),953–980.64. Brinson, L.C., Bekker, A., 1998. Phase diagram based description of the hysteresisbehavior of shape memory alloys. Acta Mater. 46 (10), 3649–3665.65. Huang, M., Brinson, L.C., 1998. A multivariant model for single crystal shapememory alloy behavior. J. Mech. Phys. Solids 46 (8), 1379–1409.11466. Lu, Z., Weng, G., 1998.
A self-consistent model for the stress–strain behavior ofshape-memory alloy polycrystals. Acta Mater. 46, 5423–5433.67. Siredey, N., Patoor, E., Berveiller, M., Eberhardt, A., 1999. Constitutive equationsfor polycrystalline thermoelastic shape memory alloys: Part I.
Intragranularinteractions and behavior of the grain. Int. J. Solids Struct. 36, 4289–4315.68. Sun, Q. P., Hwang, K. C., 1993. Micromechanics modeling for the constitutivebehavior of polycrystalline shape memory alloys — I. Derivation of generalrelations. J.
Mech. Phys. Solids 41 (1), 1–17.69. Sun, Q. P., Hwang, K. C., 1993. Micromechanics modelling for the constitutivebehavior of polycrystalline shape memory alloys — II. Study of the individualphenomena. J. Mech. Phys. Solids 41 (1), 19–33.70. Goo, B.C., Lexcellent, C., 1997. Micromechanics-based modeling of two-way shapememory effect of a single crystalline shape memory alloy.
Acta Metall. Mater. 45(2), 727–737.71. Vivet, A., Lexcellent, C., 1998. Micromechanical modeling for tension-compressionpseudoelastic behavior of AuCd single crystals. Eur. Phys. J. Appl. Phys. 4 (2), 125–132.72. Tanaka K., Iwasaki R. A phenomenological theory of transformation superplasticity// Engineering Fracture Mechanics. 1985. Vol. 21, № 4. P. 709-720.73. Patoor, E., Bensalah, M.O., Eberhardt, A., Berveiller, M., 1992. Micromechanicalaspects of the shape memory behaviour. In: Proceedings of the Int.
Conf. onMartensitic Transformation, pp. 401–406.74. Fassi-Fehri, O., Hihi, A., Berveiller, M., 1987. Elastic interactions between variantsin pseudoelastic single crystals. Scripta Met. 21, 771.75. El Amrani, M., 1994. Contribution a` l’eґtude micromeґcanique des transformationsmartensitiques thermoeґlastiques. Thesis, Universiteґ de Metz.76. Agouram, S., Abdou, L., Bensalah, M.O., 1998. Comportement thermomeґcaniqueen plasticiteґ de transformation.
Eur. Phys. J. AP 341–346.11577. Patoor, E., and Berveiller, M., 1997. Micromechanical modeling of thermoelasticbehavior of shape memory alloys. In: Fischer, F. D., Berveiller, M. (Eds.), CISMLecture Notes No. 368, Mechanics of Solids with Phase Change, pp. 121–188.78.
C. Niclaeys, T. Ben Zineb, S. Arbab-Chirani, E. Patoor Determination of theinteraction energy in the martensitic state // International Journal of Plasticity 18(2002) 1619–164779. Miyazaki S., Igo Y., Otsuka K. Effect of thermal cycling on the transformationtemperatures of TiNi alloys // Acta Met. 1986. Vol. 34. P. 2045–2051.80. Morgan N.B., Friend C.M. A review of shape memory stability in NiTi alloys // JPhys IV. 2001.
Vol. 11. P. 325–332.81. Kwarciak J., Lekston Z., Morawirec H. Effect of Thermal Cycling And Ti2NiPrecipitation on the Stability of the Ni-Ti Alloys // J Sci Mater. 1987. Vol. 7. P.2341–2345.82. Tadaki T., Nakata Y., SHIMIZU K. Thermal cycling effects in an aged Ni-rich TiNi shape memory alloy // Japan Inst. Met. Trans.
1987.83. Abeyaratne, R., Kim, S.-J., 1997. Cyclic effects in shape-memory alloys: Aonedimensional continuum model. Int. J. Solids Struct. 34 (25), 3273–3289.84. Lexcellent, C., Leclerq, S., Gabry, B., Bourbon, G., 2000. The two way shapememory effect of shape memory alloys: An experimental study and aphenomenological model. Int. J.
Plasticity 16, 1155–1168.85. Vacher, P. ( 1991), Etude du comportement pseudoelastique d'alliages a memoire deforme Cu Zn AI polycristallin, Thesis No.215, UFR Sciences, Besancon, France.86. Tanaka, K. (1990), A phenomenological description on thermomechanical behaviorof shape memory alloys, J. Pressure Vessel Technol.
112, 158.87. Lagoudas, D. C., Entchev, P. B., 2004. Modeling of transformation-inducedplasticity and its effect on the behavior of porous shape memory alloys. Part I:Constitutive model for fully dense SMAs. Mech. Mater. 36 (9), 865–892.88. Fischer, F. D., Oberaigner, E. R., Tanaka, K., Nishimura, F., 1998. Transformationinduced plasticity revised, an updated formulation. Int. J. Solids Struct. 35 (18),2209–2227.11689.