Диссертация (1149648), страница 8
Текст из файла (страница 8)
Òîãäà ñ ó÷¼òîì (4.3) èìååìZ tx(t) = x0 +z(τ )dτ.0Îòíîñèòåëüíî âåêòîð-ôóíêöèè z ñäåëàåì ïðåäïîëîæåíèå, àíàëîãè÷íîå (4.6)(4.7). ÈìååìZ tf (x, u, t) = f (x0 +z(τ )dτ, u, t),0tZf0 (x, ẋ, u, t) = f (x0 +z(τ )dτ, z, u, t).0Ââåä¼ì â ðàññìîòðåíèå ôóíêöèîíàënXFλ (z, u) = I(z, u) + λ ϕ(z, u) +ψi (z) + max{0,sZϕ(z, u) =Tu(t), u(t) dt − 1} ,0i=1ãäåZTz(t) − f x, u, t , z(t) − f x, u, t dt,0ψi (z) = ψ i (z), ψ i (z) = x0i +Zzi (t)dt − xT i , i = 1, n,047T(4.8)à x0i i-àÿ êîìïîíåíòà âåêòîðà x0 , xT i i-àÿ êîìïîíåíòà âåêòîðà xT , i = 1, n, λ > 0 íåêîòîðàÿ êîíñòàíòà.Îáîçíà÷èìΦ(z, u) = ϕ(z, u) +nXZψi (z) + max{0,Tu(t), u(t) dt − 1}.(4.9)0i=1Íåòðóäíî âèäåòü, ÷òî ôóíêöèîíàë (4.9) íåîòðèöàòåëåí äëÿ âñåõ z ∈ Pn [0, T ] è äëÿ âñåõu ∈ Pm [0, T ] è îáðàùàåòñÿ â íîëü â òî÷êå [z, u] ∈ Pn [0, T ] × Pm [0, T ] òîãäà è òîëüêî òîãäà,êîãäà âåêòîð-ôóíêöèÿ u óäîâëåòâîðÿåò îãðàíè÷åíèþ (4.2), à âåêòîð-ôóíêöèÿZ tx(t) = x0 +z(τ )dτ0óäîâëåòâîðÿåò ñèñòåìå (4.1) ïðè u(t) = u(t) è îãðàíè÷åíèÿì (4.3)(4.4).Ââåä¼ì ìíîæåñòâàΩ = [z, u] ∈ Pn [0, T ] × Pm [0, T ] Φ(z, u) = 0 ,Ωδ = [z, u] ∈ Pn [0, T ] × Pm [0, T ] Φ(z, u) < δ ,ãäå δ > 0 íåêîòîðîå ÷èñëî.
ÒîãäàΩδ \ Ω = [z, u] ∈ Pn [0, T ] × Pm [0, T ] 0 < Φ(z, u) < δ .Èìååò ìåñòî ñëåäóþùàÿ òåîðåìà [38].Ïóñòü ôóíêöèîíàë I ÿâëÿåòñÿ ëèïøèöåâûì íà ìíîæåñòâå Ωδ \ Ω. Åñëèíàéä¼òñÿ òàêîå ïîëîæèòåëüíîå ÷èñëî λ0 < ∞, ÷òî äëÿ âñåõ λ > λ0 ñóùåñòâóåò òî÷êà[z(λ), u(λ)] ∈ Pn [0, T ] × Pm [0, T ], äëÿ êîòîðîé Fλ z(λ), u(λ) = inf Fλ (z, u), òî ôóíêöèîíàë[z,u](4.8) áóäåò òî÷íîé øòðàôíîé ôóíêöèåé.Òåîðåìà 4.2.1.Òàêèì îáðàçîì, ïðè ñäåëàííûõ â Òåîðåìå 4.2.1 ïðåäïîëîæåíèÿõ ñóùåñòâóåò òàêîå ÷èñëî0 < λ∗ < ∞, ÷òî ∀λ > λ∗ èñõîäíàÿ çàäà÷à ìèíèìèçàöèè ôóíêöèîíàëà (4.5) íà ìíîæåñòâåΩ ýêâèâàëåíòíà çàäà÷å ìèíèìèçàöèè ôóíêöèîíàëà (4.8) íà âñ¼ì ïðîñòðàíñòâå.
Äàëåå áóäåìñ÷èòàòü, ÷òî â ôóíêöèîíàëå (4.8) ÷èñëî λ ôèêñèðîâàíî è âûïîëíåíî óñëîâèå λ > λ∗ .4.3Íåîáõîäèìûå óñëîâèÿ ìèíèìóìàÂâåä¼ì ìíîæåñòâàΩ1 = z ∈ Pn [0, T ] x0 +Z048Tz(t)dt = xT ,TZΩ2 = u ∈ Pm [0, T ] u(t), u(t) dt 6 1 ,0Ω3 = [z, u] ∈ Pn [0, T ] × Pm [0, T ] ϕ(z, u) = 0 .Íàì òàêæå ïîòðåáóþòñÿ èíäåêñíûå ìíîæåñòâàI0 = {i = 1, n | ψ i (z) = 0},I− = {i = 1, n | ψ i (z) < 0},I+ = {i = 1, n | ψ i (z) > 0}è ñëåäóþùèå ìíîæåñòâà óïðàâëåíèéU0 = u ∈ Pm [0, T ] TZu(t), u(t) dt − 1 = 0 ,0U− = u ∈ Pm [0, T ] TZu(t), u(t) dt − 1 < 0 ,0U+ = u ∈ Pm [0, T ] TZu(t), u(t) dt − 1 > 0 .0Äàëåå èíîãäà áóäåì ïèñàòü f âìåñòî f (x, u, t) è f0 âìåñòî f0 (x, z, u, t).Ïðè [z, u] ∈/ Ω3 ôóíêöèîíàë Fλ ñóáäèôôåðåíöèðóåì, è åãî ñóáäèôôåðåíöèàëâ òî÷êå [z, u] âûðàæàåòñÿ ïî ôîðìóëåÒåîðåìà 4.3.1.∂Fλ (z, u) =nh ZtTZ T 0nXX∂f∂f0∂f0dτ ++ λ w(t) −w(τ )dτ +ωi ei +µj ej ,∂x∂z∂xtj=1i∈I0i0 ∂f∂f0+λ −w(t) + 2νu(t) ωi ∈ [−1, 1], i ∈ I0 ,∂u∂uµj = 0, j ∈ I0 , µj = 1, j ∈ I+ , µj = −1, j ∈ I− , (4.10)ν ∈ [0, 1], u ∈ U0 , ν = 1, u ∈ U+ , ν = 0, u ∈ U− ,z(t) − f (x, u, t) ow(t) =.ϕ(z, u)Äîêàçàòåëüñòâî.
Ïóñòü v ∈ Pn[0, T ], w ∈ Pm[0, T ]. Âû÷èñëèìsZTϕ(z + αv, u) =Zz(t) + αv(t) − f x0 +0sZT=0ãäåo(α)αt2z(τ ) + αv(τ )dτ, u(t) + αw(t), t dt =0Z tZ2∂f t∂fz(t) − f x0 +z(τ )dτ, u(t), t + αv(t) − αv(τ )dτ − α w(t) dt + o(α),∂x 0∂u0→ 0 ïðè α → 0. Òîãäà èç ïîñëåäíåãî ðàâåíñòâà ñëåäóåò0Zϕ ([z, u], [v, w]) =0T∂fw(t), v(t) −∂xZtZv(τ )dτ dt −0490T ∂f 0∂uw(t), w(t) dt.Èñïîëüçóÿ èíòåãðèðîâàíèå ïî ÷àñòÿì â ïîñëåäíåì ðàâåíñòâå, ïîëó÷àåìZ T 0Z TZ T 0∂f∂f0w(t) −ϕ ([z, u], [v, w]) =w(τ )dτ, v(t) dt −w(t), w(t) dt.∂x∂ut00Íàõîäÿ ïðîèçâîäíóþ ôóíêöèîíàëà I ïî íàïðàâëåíèþ [v, w] ∈ Pn [0, T ] × Pm [0, T ], óáåæäàåìñÿ, ÷òî îí äèôôåðåíöèðóåì ïî ÃàòîZ T Z TZ T∂f0∂f0∂f00dτ +, v(t) dt +, w(t) dt.I ([z, u], [v, w]) =∂x∂z∂u0t0Êëàññè÷åñêèå âàðèàöèè ôóíêöèîíàëîâ ψi , i = 1, n, è max{0,ZTu(t), u(t) dt − 1} áå-0ðóòñÿ òàê æå, êàê â Òåîðåìå 3.3.1.Îêîí÷àòåëüíî èìååì âûðàæåíèå äëÿ ñóáäèôôåðåíöèàëà ∂Fλ (z, u), êîòîðîå âûïèñàíîâ ôîðìóëèðîâêå òåîðåìû.Òåîðåìà äîêàçàíà.Ïðè [z, u] ∈ Ω3 ôóíêöèîíàë Fλ ñóáäèôôåðåíöèðóåì, è åãî ñóáäèôôåðåíöèàëâ òî÷êå [z, u] âûðàæàåòñÿ ïî ôîðìóëåÒåîðåìà 4.3.2.Z T 0nXX∂f0∂f∂f0∂Fλ (z, u) =dτ ++ λ v(t) −v(τ )dτ +ωi ei +µj ej ,∂x∂z∂xttj=1i∈I0ZioT ∂f 0∂f0v(t), v(t) dt 6 1 ,+λ −v(t) + 2νu(t) v ∈ Pn [0, T ], ||v||2 =∂u∂u0nh ZT(4.11)ãäå ωi ∈ [−1, 1], i ∈ I0, µj , j = 1, n, ν îïðåäåëåíû â (4.10).Äîêàçàòåëüñòâî.
Çàìåòèì, ÷òîTZϕ(z, u) = max||v||61Z tz(t) − f x0 +z(τ ), u(t), t , v(t) dt.00Ïóñòü v ∈ Pn [0, T ], wZ t ∈ Pm [0, T ] Ïî óñëîâèþ [z, u] ∈ Ω3 , ïîýòîìó ϕ(z, u) = 0, òî åñòüm(t) := z(t) − f x0 +z(τ )dτ, u(t), t) = 0 ∀t ∈ [0, T ]. Òàê êàê0tZz(t) + αv(t) − f x0 +0ãäåo(α)α∂fz(τ ) + αv(τ )dτ, u(t), t = m(t) + α v(t) −∂xZtv(τ )dτ + o(α),0→ 0 ïðè α → 0, òîZ0ϕ ([z, u], [v, w]) = max||v||610T∂fv(t) −∂xZ0t ∂f 0v(τ )dτ, v(t) −v(t), w(t) dt.∂uÈñïîëüçóÿ èíòåãðèðîâàíèå ïî ÷àñòÿì â ïîñëåäíåì ðàâåíñòâå, ïîëó÷àåìZ TZ T 0 ∂f 0∂f0v(t) −v(τ )dτ, v(t) −v(t), w(t) dt.ϕ ([z, u], [v, w]) = max||v||61 0∂x∂ut50Êëàññè÷åñêèå âàðèàöèè ôóíêöèîíàëîâ ψi , i = 1, n, è max{0,ZTu(t), u(t) dt − 1} áå-0ðóòñÿ òàê æå, êàê â Òåîðåìå 3.3.1, à ôóíêöèîíàëà I òàê æå, êàê â Òåîðåìå 4.3.1.Îêîí÷àòåëüíî èìååì âûðàæåíèå äëÿ ñóáäèôôåðåíöèàëà ∂Fλ (z, u), êîòîðîå âûïèñàíîâ ôîðìóëèðîâêå òåîðåìû.Òåîðåìà äîêàçàíà.Åñëè [z, u] ∈ Ω3, z ∈ Ω1, u ∈ Ω2, òî ôóíêöèîíàë Fλ ñóáäèôôåðåíöèðóåì,è åãî ñóáäèôôåðåíöèàë â òî÷êå [z, u] âûðàæàåòñÿ ïî ôîðìóëåÑëåäñòâèå 4.3.1.Z T 0X∂f0∂f∂f0∂Fλ (z, u) =dτ ++ λ v(t) −v(τ )dτ +ωi ei ,∂x∂z∂xtti∈I0i0∂f0∂f+λ −v(t) + 2νu(t) ωi ∈ [−1, 1], i = 1, n,∂u∂uZ To2v(t), v(t) dt 6 1 .ν ∈ [0, 1], u ∈ U0 , ν = 0, u ∈ U− , v ∈ Pn [0, T ], ||v|| =nh ZTÄîêàçàòåëüñòâî.
Åñëè [z, u] ∈ Ω3, z(4.12)0∈ Ω1 , u ∈ Ω2 , òî I+ = ∅, U+ = ∅, è ôîðìóëà (4.12)ñëåäóåò èç (4.11).Åñëè ñèñòåìà (4.1) ëèíåéíà ïî ôàçîâûì ïåðåìåííûì x è ïî óïðàâëåíèþ u, àôóíêöèîíàë I âûïóêëûé, òî ôóíêöèîíàë Fλ ÿâëÿåòñÿ âûïóêëûì.Äîêàçàòåëüñòâî. Ïðåäñòàâèì ôóíêöèîíàë (4.8) â âèäåËåììà 4.3.1.Fλ (z, u) = I(z, u) + λϕ(z, u) + λF1 (z) + λF2 (u),ãäå I(z, u), F1 (z), F2 (u) ñîîòâåòñòâóþùèå ñëàãàåìûå èç ïðàâîé ÷àñòè (4.8). ÔóíêöèîíàëûF1 è F2 âûïóêëû êàê ìàêñèìóìû âûïóêëûõ ôóíêöèîíàëîâ [24]. Ôóíêöèîíàë I âûïóêëûé ïîóñëîâèþ.
Ïîêàæåì âûïóêëîñòü ôóíêöèîíàëà ϕ â ñëó÷àå ëèíåéíîñòè ñèñòåìû (4.1).Ïóñòü ñèñòåìà (4.1) èìååò âèäẋ = A(t)x + B(t)u + c(t),ãäå A(t) n × n-ìàòðèöà, B(t) n × m-ìàòðèöà, c(t) n-ìåðíàÿ âåêòîð-ôóíêöèÿ. Ñ÷èòàåì A(t), B(t), c(t) âåùåñòâåííûìè è íåïðåðûâíûìè íà [0, T ]. Ïóñòü z1 , z2 ∈ Pn [0, T ],u1 , u2 ∈ Pm [0, T ], α ∈ (0, 1). Îáîçíà÷èì ϕ(z, u, t) = z(t) − f (x, u, t). Èìååì ϕ2 α(z1 , u1 ) + (1 − α)(z2 , u2 ) = αz1 (t) + (1 − α)z2 (t) −Z t 2 −A(t) x0 +αz1 (τ ) + (1 − α)z2 (τ ) dτ − B(t) αu1 (t) + (1 − α)u2 (t) − c(t) =0Z T22= αϕ(z1 , u1 ) + (1 − α)ϕ(z2 , u2 ) = αϕ(z1 , u1 , t), ϕ(z1 , u1 , t) dt + (4.13)0Z TZ T2+2α(1 − α)ϕ(z1 , u1 , t), ϕ(z2 , u2 , t) dt + (1 − α)ϕ(z2 , u2 , t), ϕ(z2 , u2 , t) dt,0051Z T22ϕ(z1 , u1 , t), ϕ(z1 , u1 , t) dt +αϕ(z1 , u1 ) + (1 − α)ϕ(z2 , u2 ) = α0sZ TZ T+2α(1 − α)ϕ(z1 , u1 , t), ϕ(z1 , u1 , t) dtϕ(z2 , u2 , t), ϕ(z2 , u2 , t) dt +00+(1 − α)2ZTϕ(z2 , u2 , t), ϕ(z2 , u2 , t) dt.(4.14)0 ñèëó íåðàâåíñòâà üëüäåðà äëÿ âñåõ z1 , z2 , u1 , u2 áóäåòZ Tϕ(z1 , u1 , t), ϕ(z2 , u2 , t) dt 60sZT6sZϕ(z1 , u1 , t), ϕ(z1 , u1 , t) dt0Tϕ(z2 , u2 , t), ϕ(z2 , u2 , t) dt,0ïîýòîìó èç (4.13) è (4.14) ïîëó÷àåì, ÷òî2ϕ2 α(z1 , u1 ) + (1 − α)(z2 , u2 ) 6 αϕ(z1 , u1 ) + (1 − α)ϕ(z2 , u2 ) .(4.15)Òàê êàê ϕ α(z1 , u1 ) + (1 − α)(z2 , u2 ) > 0, αϕ(z1 , u1 ) + (1 − α)ϕ(z2 , u2 ) > 0, òî èç íåðàâåíñòâà(4.15) ∀ z1 , z2 , u1 , u2 è α ∈ (0, 1) ñëåäóåòϕ α(z1 , u1 ) + (1 − α)(z2 , u2 ) 6 αϕ(z1 , u1 ) + (1 − α)ϕ(z2 , u2 ),÷òî è äîêàçûâàåò âûïóêëîñòü ôóíêöèîíàëà ϕ â ñëó÷àå ëèíåéíîñòè èñõîäíîé ñèñòåìû.Òåïåðü îñòà¼òñÿ çàìåòèòü, ÷òî ôóíêöèîíàë Fλ ÿâëÿåòñÿ âûïóêëûì (â ñëó÷àå ëèíåéíîñòè èñõîäíîé ñèñòåìû) êàê ñóììà âûïóêëûõ ôóíêöèîíàëîâ [24].Ëåììà äîêàçàíà.Èçâåñòíî [23], ÷òî íåîáõîäèìûì, à â ñëó÷àå âûïóêëîñòè è äîñòàòî÷íûì óñëîâèåì ìèíèìóìà ôóíêöèîíàëà (4.8) â òî÷êå [z ∗ , u∗ ] â òåðìèíàõ ñóáäèôôåðåíöèàëà ÿâëÿåòñÿ óñëîâèå0n+m ∈ ∂Fλ (z ∗ , u∗ ),ãäå 0n+m íóëåâîé ýëåìåíò ïðîñòðàíñòâà Pn [0, T ] × Pm [0, T ].
Îòñþäà ñ ó÷¼òîì Ëåììû 4.3.1çàêëþ÷àåì, ÷òî ñïðàâåäëèâàÒåîðåìà 4.3.3. Äëÿ òîãî ÷òîáû óïðàâëåíèå u∗ ∈ Ω2 ïåðåâîäèëî ñèñòåìó (4.1) èç íà÷àëüíî-ãî ïîëîæåíèÿ (4.3) â êîíå÷íîå ñîñòîÿíèå (4.4) è äîñòàâëÿëî ìèíèìóì ôóíêöèîíàëó (4.5),íåîáõîäèìî, à â ñëó÷àå ëèíåéíîñòè ñèñòåìû (4.1) è âûïóêëîñòè ôóíêöèîíàëà (4.5) è äîñòàòî÷íî, ÷òîáû0n+m ∈ ∂Fλ (z ∗ , u∗ ),ãäå âûðàæåíèå äëÿ ñóáäèôôåðåíöèàëà ∂Fλ(z, u) âûïèñàíî â (4.12).52(4.16)4.4Ìåòîä ñóáäèôôåðåíöèàëüíîãî ñïóñêàÍàéä¼ì ìèíèìàëüíûé ïî íîðìå ñóáãðàäèåíò h = h(t, z, u) ∈ ∂Fλ (z, u) â òî÷êå [z, u], òîåñòü ðåøèì çàäà÷ó||h||2 .minh∈∂Fλ (z,u)Çàôèêñèðóåì òî÷êó [z, u] è ðàññìîòðèì äâà ñëó÷àÿ.À. Ïóñòü ϕ(z, u) > 0.  ýòîì ñëó÷àåZhZ TX22min ||h|| = mins1 (t) + λωi ei dt +ωi , i∈I0 , νh∈∂Fλ (z,u)0T2 is2 (t) + 2λνu(t) dt ,(4.17)0i∈I0ãäås1 (t) = s1 (t) + λnXµj ej ,j=1Zs1 (t) =tTZ T 0∂f0∂f0∂fdτ ++ λ w(t) −w(τ )dτ ,∂x∂z∂xt∂f0∂f 0−λs2 (t) =w(t),∂u∂uà âåëè÷èíû ωi , i ∈ I0 , µj , j = 1, n, ν è âåêòîð-ôóíêöèÿ w(t) îïðåäåëåíû â (4.10).Çàäà÷à (4.17) ïðåäñòàâëÿåò ñîáîé çàäà÷ó êâàäðàòè÷íîãî ïðîãðàììèðîâàíèÿ ïðè íàëè÷èè ëèíåéíûõ îãðàíè÷åíèé è ìîæåò áûòü ðåøåíà îäíèì èç èçâåñòíûõ ìåòîäîâ [17], [18].Îáîçíà÷èì ωi∗ , i ∈ I0 , ν ∗ å¼ ðåøåíèå.















