Диссертация (1149648), страница 7
Текст из файла (страница 7)
Ïóñòü g = [g1 , g2 ], ãäå âåêòîð-ôóíêöèÿ g2 ñîñòîèò èçïîñëåäíèõ n + m êîìïîíåíò âåêòîð-ôóíêöèè g . Òîãäà âåêòîð-ôóíêöèÿG(t, z, u) :=g2∗n X ∗= s1 (t), s2 (t) +βi ei , 0m + (1 − βi∗ ) − ei , 0m +i=1∗∗) 0n , 0m+βn+10n , 2u + (1 − βn+1ÿâëÿåòñÿ âåêòîð-ôóíêöèåé, ñîñòîÿùåé èç ïîñëåäíèõ n + m êîìïîíåíò íàèìåíüøåãî ïî íîðìåG(t,z,u)ãèïîãðàäèåíòà ôóíêöèîíàëà I â òî÷êå [z, u]. Åñëè ||G(z, u)|| > 0, òî âåêòîð-ôóíêöèÿ − ||G(z,u)||ÿâëÿåòñÿ íàïðàâëåíèåì ãèïîãðàäèåíòíîãî ñïóñêà ôóíêöèîíàëà I â òî÷êå [z, u].40Îïèøåì ñëåäóþùèé ìåòîä ãèïîäèôôåðåíöèàëüíîãî ñïóñêà äëÿ ïîèñêà ñòàöèîíàðíûõòî÷åê ôóíêöèîíàëà I .
Ôèêñèðóåì ïðîèçâîëüíóþ òî÷êó [z1 , u1 ] ∈ Pn [0, T ]×Pm [0, T ]. Ïóñòü óæåïîñòðîåíà òî÷êà [zk , uk ] ∈ Pn [0, T ] × Pm [0, T ]. Åñëè âûïîëíåíî íåîáõîäèìîå óñëîâèå ìèíèìóìà(3.7) èëè (3.10), òî òî÷êà [zk , uk ] ÿâëÿåòñÿ ñòàöèîíàðíîé òî÷êîé ôóíêöèîíàëà I , è ïðîöåññïðåêðàùàåòñÿ.  ïðîòèâíîì ñëó÷àå ïîëîæèì[zk+1 , uk+1 ] = [zk , uk ] − αk Gk ,ãäå âåêòîð-ôóíêöèÿ Gk = G(t, zk , uk ) ïðåäñòàâëÿåò ñîáîé âåêòîð-ôóíêöèþ, ñîñòîÿùóþ èçïîñëåäíèõ n + m êîìïîíåíò íàèìåíüøåãî ïî íîðìå ãèïîãðàäèåíòà ôóíêöèîíàëà I â òî÷êå[zk , uk ], à âåëè÷èíà αk ÿâëÿåòñÿ ðåøåíèåì ñëåäóþùåé çàäà÷è îäíîìåðíîé ìèíèìèçàöèèmin I([zk , uk ] − αGk ) = I([zk , uk ] − αk Gk ).α>0ÒîãäàI(zk+1 , uk+1 ) 6 I(zk , uk ).Ïóñòü ôóíêöèîíàë g ÿâëÿåòñÿ ëèïøèöåâûì ïî [z, u] â øàðå ñ öåíòðîì â íóëå è ðàäèóñàr0 > r =sup ||[z, u]|| (ìíîæåñòâî Ëåáåãà L0 = {[z, u] ∈ Pn [0, T ] × Pm [0, T ] | I(z, u) 6[z,u]∈L06 I(z1 , u1 )} ïðåäïîëàãàåòñÿ îãðàíè÷åííûì). Åñëè ïîñëåäîâàòåëüíîñòü {[zk , uk ]} áåñêîíå÷íà,òî ïðè ýòèõ äîïîëíèòåëüíûõ ïðåäïîëîæåíèÿõ ìåòîä ãèïîäèôôåðåíöèàëüíîãî ñïóñêà ñõîäèòñÿ [23] â ñëåäóþùåì ñìûñëå:sZ||g(zk , uk )|| =Tg(t, zk , uk ), g(t, zk , uk ) dt → 0 ïðè k → ∞.0Åñëè ïîñëåäîâàòåëüíîñòü {[zk , uk ]} êîíå÷íà, òî ïîñëåäíÿÿ å¼ òî÷êà ÿâëÿåòñÿ ñòàöèîíàðíîéòî÷êîé ôóíêöèîíàëà I ïî ïîñòðîåíèþ.3.6×èñëåííûå ïðèìåðûÏðèâåä¼ì ïðèìåðû çàäà÷ ïîñòðîåíèÿ ïðîãðàììíîãî óïðàâëåíèÿ, â êîòîðûõ ìåòîä ñóáäèôôåðåíöèàëüíîãî ñïóñêà ïðèâ¼ë ê òî÷êå ìèíèìóìà ôóíêöèîíàëà (3.5).Ïðèìåð 3.6.1.Ðàññìîòðèì ñèñòåìó ẋ1 = x2 , ẋ = u2ñ íà÷àëüíûì óñëîâèåìx0 = [2, 1].41Òðåáóåòñÿ ïåðåâåñòè ñèñòåìó â íà÷àëî êîîðäèíàò, òî åñòüxT = [0, 0].Ïðè ýòîì íà óïðàâëåíèå íàêëàäûâàåòñÿ èíòåãðàëüíîå îãðàíè÷åíèåZ Tu(t), u(t) dt 6 C.0Èçâåñòíî [34], ÷òî äàííàÿ ñèñòåìà ÿâëÿåòñÿ ïîëíîñòüþ óïðàâëÿåìîé, ïîýòîìó ñóùåñòâóåò òàêîå C ∗ > 0, ÷òî ∀ C > C ∗ ìèíèìóì ôóíêöèîíàëà (3.5), ðàâíûé íóëþ, äîñòèãàåòñÿ.Êðîìå òîãî, ïîñêîëüêó ñèñòåìà ëèíåéíà, òî â ñèëó Ëåììû 3.3.1 ôóíêöèîíàë (3.5) ÿâëÿåòñÿâûïóêëûì, ïîýòîìó ëþáàÿ åãî ñòàöèîíàðíàÿ òî÷êà ÿâëÿåòñÿ òî÷êîé ìèíèìóìà.Ïîëîæèì T = 1, C = 3.
Äëÿ ýòîé çàäà÷è èçâåñòíî àíàëèòè÷åñêîå ðåøåíèå [34]. Äëÿçàäàííûõ ãðàíè÷íûõ óñëîâèé îíî èìååò âèäu∗ (t) = 30t − 16 + v2 (t),Z t∗2v2 (τ )dτ,z1 (t) = 15t − 16t + 1 +0z2∗ (t)= 30t − 16 + v2 (t),ãäå âåêòîð-ôóíêöèÿ v(t) = [v1 (t), v2 (t)] óäîâëåòâîðÿåò ñëåäóþùåìó óñëîâèþ îðòîãîíàëüíîñòèZ 1− tv1 (t) + v2 (t) dt = 0.0 Òàáëèöå 3.6.1 ïðèâåäåíû ðåçóëüòàòû ðàáîòû ìåòîäà ñóáäèôôåðåíöèàëüíîãî ñïóñêà (äëÿàíàëèòè÷åñêîãî ðåøåíèÿ çäåñü ïîëîæåíî v(t) = [0, 0]).  êà÷åñòâå íà÷àëüíîãî ïðèáëèæåíèÿâçÿòà òî÷êà z(t) = [0, −1], à òîãäà x(t) = [2, 1 − t].
Èç Òàáëèöû 3.6.1 âèäíî, ÷òî íà 40-éèòåðàöèè ïîãðåøíîñòü íå ïðåâûøàåò âåëè÷èíû 2 × 10−2 .Òàáëèöà 3.6.1kI(zk , uk ) ||u∗ − uk || ||z ∗ − zk || ||G(zk , uk )||12.666668.71788.96291.1642821.969988.66038.712760.20983101.344256.239756.357640.27035200.827724.602874.649190.27871300.153262.10942.320910.1575400.019510.635030.592020.0524942Ïðèìåð 3.6.2.Ðàññìîòðèì åù¼ îäèí ïðèìåð. Ïóñòü çàäàíà ñèñòåìàẋ1 = x2 x3 + u1 ,ẋ2 = x3 x1 + u2 , ẋ3 = x1 x2 + u3 .Òàêèå ñèñòåìû âîçíèêàþò èç äèíàìè÷åñêèõ óðàâíåíèé Ýéëåðà ïðè ìîäåëèðîâàíèè äâèæåíèÿñïóòíèêà [43]. Ïðè ýòîì äâèæåíèå ñïóòíèêà îòíîñèòåëüíî åãî öåíòðà èíåðöèè ðàññìàòðèâàåòñÿ êàê âðàùåíèå òâ¼ðäîãî òåëà âîêðóã íåïîäâèæíîé òî÷êè.
Óïðàâëåíèÿ u1 , u2 , u3 õàðàêòåðèçóþò âîçäåéñòâèå, êîòîðîå îêàçûâàþò íà ñïóòíèê óñòàíîâëåííûå íà í¼ì äâèãàòåëè. Âíà÷àëüíûé ìîìåíò ñïóòíèê âðàùàåòñÿ ñ çàäàííîé óãëîâîé ñêîðîñòüþx(0) = x0 .Òðåáóåòñÿ òàê óïðàâëÿòü äâèãàòåëÿìè, ÷òîáû çà ôèêñèðîâàííîå âðåìÿ T ïîãàñèòü óãëîâûåñêîðîñòè òåëàxT = 0.Ïðè ýòîì ðåñóðñû óïðàâëåíèÿ îãðàíè÷åíûZ Tu(t), u(t) dt 6 C.0Ïîëîæèì x0 = [1, 0, 0], T = 1, C = 2.
Äëÿ ýòîé çàäà÷è òàêæå èçâåñòíî àíàëèòè÷åñêîåðåøåíèå [43]. Äëÿ çàäàííûõ ãðàíè÷íûõ óñëîâèé îíî èìååò âèäZ 1u∗1 (t)dt = −1, u∗2 (t) = 0, u∗3 (t) = 0,0z1∗ (t) = u∗1 (t), z2∗ (t) = 0, z3∗ (t) = 0. Òàáëèöå 3.6.2 ïðèâåäåíû ðåçóëüòàòû ðàáîòû ìåòîäà ñóáäèôôåðåíöèàëüíîãî ñïóñêà.  êà÷åñòâå íà÷àëüíîãî ïðèáëèæåíèÿ âçÿòà òî÷êà u(t) = [ 21 , 12 , 12 ], z(t) = [0, 1, 1], à òîãäàx(t) = [1, t, t]. Èç Òàáëèöû 3.6.2 âèäíî, ÷òî íà 6-é èòåðàöèè ïîãðåøíîñòü íå ïðåâûøàåò âåëè÷èíû 2 × 10−2 .Òàáëèöà 3.6.2kIkZ01u1k (t)dt + 1|u2k ||u3k ||z1k − u1k ||z2k ||z3k |||Gk ||0.50.50.5111.1956313.4751.521.30840.925290.53818 0.538180.464180.29504 0.29504 1.567043 0.655960.80520.51081 0.510810.671170.08815 0.08815 1.098894 0.458220.171460.31975 0.319750.657210.07178 0.071785 0.2455600.19245 0.192450.64580.06178 0.06178 0.73868600.03525 0.035250.123280.03544 0.03544 0.123210.0146430.9434Ïðèìåð 3.6.3.Ðàññìîòðèì åù¼ îäíó ñèñòåìóẋ1 = x2 ,ẋ2 = − sin(x1 ) + u, ẋ3 = u.Òàêèå ñèñòåìû âîçíèêàþò â íåëèíåéíîì âàðèàíòå çàäà÷è îá óñïîêîåíèè ìàÿòíèêà [14].
Òðåáóåòñÿ ïåðåâåñòè ñèñòåìó èç çàäàííîãî íà÷àëüíîãî ïîëîæåíèÿx0 = [1, 0, 0]â çàäàííîå êîíå÷íîå ñîñòîÿíèåxT = [0, 0, π].Ïðè ýòîì íà óïðàâëåíèå íàêëàäûâàåòñÿ îãðàíè÷åíèåZ Tu(t), u(t) dt 6 C.0Ïîëîæèì T = 2π , C = π . Òàáëèöå 3.6.3 ïðèâåäåíû ðåçóëüòàòû âû÷èñëåíèé.  êà÷åñòâå íà÷àëüíîãî ïðèáëèæåíèÿ âçÿòà òî÷êà u(t) = 21 , z(t) = [ 12 , 21 , 12 ], à òîãäà x(t) = [1 + 12 t, 12 t, 12 t]. Èç Òàáëèöû 3.6.3 âèäíî,÷òî íà 10-é èòåðàöèè ïîãðåøíîñòü íå ïðåâûøàåò âåëè÷èíû 3 × 10−2 .Òàáëèöà 3.6.3kÏðèìåð 3.6.4.I(zk , uk ) ||G(zk , uk )||115.046.490824.676275.3184350.266270.8763100.023610.0683Ïóñòü çàäàíà ñèñòåìàẋ1 = x4 ,ẋ2 = x5 , ẋ3 = x6 ,µx1ẋ4 = − 3 + u1 ,222 2x+x+x123µx2ẋ5 = − 3 + u2 ,222 2x+x+x123µx3ẋ = − 3 + u3 . 6x21 + x22 + x23 244Ýòà ñèñòåìà îïèñûâàåò äâèæåíèå òî÷êè â ïîëå öåíòðàëüíîé ñèëû [49].
Òðåáóåòñÿ ïåðåâåñòèñèñòåìó èç çàäàííîãî íà÷àëüíîãî ïîëîæåíèÿx0 = [1, 3, 0, 10, 8, 7]â çàäàííîå êîíå÷íîå ñîñòîÿíèåxT = [36, 23, 23.5, 0, 0, 0],òî åñòü ïåðåâåñòè îáúåêò èç íà÷àëüíîãî ïîëîæåíèÿ â êîíå÷íîå, ïîãàñèâ åãî ñêîðîñòü â êîíå÷íûé ìîìåíò âðåìåíè. Ïðè ýòîì íà óïðàâëåíèå íàêëàäûâàåòñÿ îãðàíè÷åíèåZ Tu(t), u(t) dt 6 C.0Ïîëîæèì µ = 10, T = 5, C = 55. Òàáëèöå 3.6.4 ïðèâåäåíû ðåçóëüòàòû âû÷èñëåíèé.  êà÷åñòâå íà÷àëüíîãî ïðèáëèæåíèÿ âçÿòà òî÷êà u(t) = [t, 1, t], z(t) = [1, 1, 1, 1, 1, 1], à òîãäà x(t) = [1+t, 3+t, t, 10+t, 8+t, 7+t].Èç Òàáëèöû 3.6.4 âèäíî, ÷òî íà 30-é èòåðàöèè ïîãðåøíîñòü íå ïðåâûøàåò âåëè÷èíû 5 × 10−3 .Òàáëèöà 3.6.4kI(zk , uk )||G(zk , uk )||1877.18658900.231013.703120.8753200.856441.02312300.003710.0183 ðàññìîòðåííûõ ïðèìåðàõ ìåòîä ãèïîäèôôåðåíöèàëüíîãî ñïóñêà ïîêàçàë àíàëîãè÷íûå ðåçóëüòàòû.45Ãëàâà 4Îïòèìàëüíîå óïðàâëåíèå ýòîé ãëàâå ðàññìàòðèâàåòñÿ çàäà÷à îïòèìàëüíîãî óïðàâëåíèÿ ñ èíòåãðàëüíûì îãðàíè÷åíèåì íà óïðàâëåíèå è èíòåãðàëüíûì ôóíêöèîíàëîì êà÷åñòâà.
Ñ ïîìîùüþ òåîðèè òî÷íûõ øòðàôíûõ ôóíêöèé èñõîäíàÿ çàäà÷à ñâîäèòñÿ ê çàäà÷å áåçóñëîâíîé ìèíèìèçàöèè íåêîòîðîãî íåãëàäêîãî ôóíêöèîíàëà. Äëÿ íåãî íàéäåíû íåîáõîäèìûå óñëîâèÿ ìèíèìóìà â òåðìèíàõ ñóáäèôôåðåíöèàëà è ãèïîäèôôåðåíöèàëà. Âûäåëåí êëàññ çàäà÷, äëÿ êîòîðûõ ýòèóñëîâèÿ îêàçûâàþòñÿ è äîñòàòî÷íûìè. Íà îñíîâàíèè äàííûõ óñëîâèé ê ðàññìàòðèâàåìîéçàäà÷å ïðèìåíÿþòñÿ ìåòîä ñóáäèôôåðåíöèàëüíîãî ñïóñêà è ìåòîä ãèïîäèôôåðåíöèàëüíîãîñïóñêà.
Ïðèâåäåíû ïðèìåðû ðåàëèçàöèè ïðèìåíÿåìûõ ìåòîäîâ.4.1Ïîñòàíîâêà çàäà÷èÐàññìîòðèì ñèñòåìó îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèéẋ(t) = f (x, u, t), t ∈ [0, T ].(4.1)Òðåáóåòñÿ ïîäîáðàòü òàêîå óïðàâëåíèå u∗ ∈ Pm [0, T ], óäîâëåòâîðÿþùåå ñëåäóþùåìó èíòåãðàëüíîìó îãðàíè÷åíèþZTu(t), u(t) dt 6 1,(4.2)0êîòîðîå ïåðåâîäèò ñèñòåìó (4.1) èç çàäàííîãî íà÷àëüíîãî ïîëîæåíèÿx(0) = x0(4.3)x(T ) = xT(4.4)â çàäàííîå êîíå÷íîå ñîñòîÿíèåè äîñòàâëÿåò ìèíèìóì ôóíêöèîíàëóZI(x, u) =Tf0 (x, ẋ, u, t)dt.046(4.5)Ñ÷èòàåì, ÷òî îïòèìàëüíîå óïðàâëåíèå u∗ ñóùåñòâóåò.
 ñèñòåìå (4.1) T > 0 çàäàííûéìîìåíò âðåìåíè, f (x, u, t) âåùåñòâåííàÿ n-ìåðíàÿ âåêòîð-ôóíêöèÿ, x n-ìåðíàÿ âåêòîðôóíêöèÿ ôàçîâûõ êîîðäèíàò, êîòîðóþ áóäåì ñ÷èòàòü íåïðåðûâíîé ñ êóñî÷íî-íåïðåðûâíîéíà èíòåðâàëå [0, T ] ïðîèçâîäíîé, u(t) m-ìåðíàÿ âåêòîð-ôóíêöèÿ óïðàâëåíèé, êîòîðóþ ñ÷èòàåì êóñî÷íî-íåïðåðûâíîé íà ïðîìåæóòêå [0, T ]. Ïðåäïîëàãàåì f (x, u, t) íåïðåðûâíî äèôôåðåíöèðóåìîé ïî x è u è íåïðåðûâíîé ïî âñåì òð¼ì àðãóìåíòàì.Åñëè t0 ∈ [0, T ) òî÷êà ðàçðûâà âåêòîð-ôóíêöèè u, òî äëÿ îïðåäåë¼ííîñòè ïîëàãàåìu(t0 ) = lim u(t).(4.6)u(T ) = lim u(t).(4.7)t↓t0 òî÷êå T ñ÷èòàåì, ÷òît↑TÏðè ýòîì ẋ(t0 ) ïðàâîñòîðîííÿÿ ïðîèçâîäíàÿ âåêòîð-ôóíêöèè x â òî÷êå t0 , ẋ(T ) ëåâîñòîðîííÿÿ ïðîèçâîäíàÿ âåêòîð-ôóíêöèè x â òî÷êå T . ôóíêöèîíàëå (4.5) f0 (x, ẋ, u, t) âåùåñòâåííàÿ ñêàëÿðíàÿ ôóíêöèÿ, êîòîðóþ áóäåìñ÷èòàòü íåïðåðûâíî äèôôåðåíöèðóåìîé ïî x, ẋ è u è íåïðåðûâíîé ïî âñåì ÷åòûð¼ì àðãóìåíòàì.4.2Ñâåäåíèå ê âàðèàöèîííîé çàäà÷åÏîëîæèì z(t) = ẋ(t), z ∈ Pn [0, T ].















