Диссертация (1145920), страница 17
Текст из файла (страница 17)
Разработанбиоинформатическийпоследовательностей,обогащённыхалгоритмпоискаамилоидогеннымиаминокислотами, который обеспечивает выигрыш по времени работы на2 порядка по сравнению с исходным алгоритмом LPS.6. Прион [PIN+] усиливает агрегацию богатого аспарагином и глутаминомучастка белка Gln3.1089 Список литературы1. Бондарев С.А., Лихолетова Д.В., Белоусов М.В., Журавлева Г.А.
Белок Rnq1защищает прион [PSI+] от эффекта PNM мутации // Молекулярнаябиология. 2017. Т. 51. (1). С. 1–6.2. Захаров И.А., Кожин С.А., Кожина Т.Н., Федорова И.В. Сборник методикпо генетике дрожжей-сахаромицетов. Л.: Наука, 1984. 143 p.3. Инге-Вечтомов С. Идентификация некоторых групп сцепления уПетергофских генетических линий дрожжей // Генетика. 1971. Т. 7. С. 113–124.4. Aguzzi A., Heppner F.L. Pathogenesis of prion diseases: a progress report // CellDeath Differ. 2000. V.
7. (10). P. 889–902.5. Ahmed A.B., Kajava A. V. Breaking the amyloidogenicity code: methods topredict amyloids from amino acid sequence. // FEBS Lett. 2013a. V. 587. (8). P.1089–95.6. Ahmed A.B., Kajava A. V. Breaking the amyloidogenicity code: Methods topredict amyloids from amino acid sequence // FEBS Lett. 2013b. V. 587. (8). P.1089–1095.7.
Ahmed A.B., Znassi N., Château M.-T., Kajava A. V. A structure-based approachto predict predisposition to amyloidosis // Alzheimer’s Dement. 2015. V. 11. (6).P. 681–690.8. Alberti S., Halfmann R., King O., Kapila A., Lindquist S. A Systematic SurveyIdentifies Prions and Illuminates Sequence Features of Prionogenic Proteins //Cell.
2009. V. 137. (1). P. 146–158.9. Alexandrov A.I., Polyanskaya A.B., Serpionov G. V, Ter-Avanesyan M.D.,Kushnirov V. V. The effects of amino acid composition of glutamine-richdomains on amyloid formation and fragmentation. // PLoS One. 2012. V. 7. (10).P. e46458.10910. Altmeppen H.C., Puig B., Dohler F., Thurm D.K., Falker C., Krasemann S.,Glatzel M. Proteolytic processing of the prion protein in health and disease. // Am.J. Neurodegener. Dis. 2012.
V. 1. (1). P. 15–31.11. An L., Fitzpatrick D., Harrison P.M. Emergence and evolution of yeast prion andprion-like proteins. // BMC Evol. Biol. 2016. V. 16. (1). P. 24.12. Ano Bom A.P.D., Rangel L.P., Costa D.C.F., Oliveira G.A.P. de, Sanches D.,Braga C.A., Gava L.M., Ramos C.H.I., Cepeda A.O.T., Stumbo A.C., MouraGallo C. V De, Cordeiro Y., Silva J.L. Mutant p53 aggregates into prion-likeamyloid oligomers and fibrils: implications for cancer. // J. Biol.
Chem. 2012. V.287. (33). P. 28152–62.13. Antonets K.S., Nizhnikov A.A. SARP: A novel algorithm to assesscompositional biases in protein sequences // Evol. Bioinforma. 2013. V. 2013. (9).P. 263–273.14. Antonets K.S., Volkov K. V, Maltseva A.L., Arshakian L.M., Galkin A.P.,Nizhnikov A.A. Proteomic Analysis of Escherichia coli Protein FractionsResistant to Solubilization by Ionic Detergents.
// Biochem. Moskow. 2016. V.81. (1). P. 34–46.15. Arranz R., Mercado G., Martín-Benito J., Giraldo R., Monasterio O., Lagos R.,Valpuesta J.M. Structural characterization of microcin E492 amyloid formation:Identification of the precursors // J.
Struct. Biol. 2012. V. 178. (1). P. 54–60.16. Astbury W.T., Dickinson S., Bailey K. The X-ray interpretation of denaturationand the structure of the seed globulins. // Biochem. J. 1935. V. 29. (10). P. 2351–2360.1.17. Aterman K. A historical note on the iodine-sulphuric acid reaction of amyloid //Histochemistry. 1976. V. 49.
(2). P. 131–143.18. Azzalin A., Ferrara V., Arias A., Cerri S., Avella D., Pisu M.B., Nano R.,Bernocchi G., Ferretti L., Comincini S. Interaction between the cellular prion(PrPC) and the 2P domain K+ channel TREK-1 protein. // Biochem. Biophys.Res. Commun. 2006. V. 346. (1). P. 108–15.11019. Bagriantsev S.N., Kushnirov V. V., Liebman S.W. Analysis of AmyloidAggregates Using Agarose Gel Electrophoresis // Methods Enzymol. 2006. V.412. P. 33–48.20. Barnhart E.L., Dorer R.K., Murray A.W., Schuyler S.C. Reduced Mad2expression keeps relaxed kinetochores from arresting budding yeast in mitosis //Mol. Biol.
Cell. 2011. V. 22. (14). P. 2448–2457.21. Bartholin T. Historiarum Anatomicarum Rariorum. Amsterdam: ApudJohannem Henrici, 1641.22. Benditt E.P., Eriksen N., Hermodson M.A., Ericsson L.H. The major proteins ofhuman and monkey amyloid substance: Common properties including unusual Nterminal amino acid sequences. // FEBS Lett. 1971. V. 19.
(2). P. 169–173.23. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practicaland Powerful Approach to Multiple Testing // J. R. Stat. Soc. Ser. B. 1995. V. 57.(1). P. 289–300.24. Bennhold H. Specific staining of amyloid by Congo Red // Muench. Medizin.Wochensch. 1922. V. 69.
P. 1537–1538.25. Benzinger T.L., Gregory D.M., Burkoth T.S., Miller-Auer H., Lynn D.G., BottoR.E., Meredith S.C. Propagating structure of Alzheimer’s beta-amyloid(10-35) isparallel beta-sheet with residues in exact register. // Proc. Natl. Acad. Sci. U. S.A.
1998. V. 95. (23). P. 13407–12.26. Berthelot K., Lecomte S., Coulary-Salin B., Bentaleb A., Peruch F. Heveabrasiliensis prohevein possesses a conserved C-terminal domain with amyloidlike properties in vitro. // Biochim. Biophys. Acta. 2016. V. 1864. (4). P. 388–99.27. Bertram P.G., Choi J.H., Carvalho J., Ai W., Zeng C., Chan T.F., Zheng X.F.Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. // J. Biol. Chem.2000. V. 275. (46).
P. 35727–33.28. Boke E., Ruer M., Wühr M., Coughlin M., Lemaitre R., Gygi S.P., Alberti S.,Drechsel D., Hyman A.A., Mitchison T.J., al-Mukhtar K.A., Webb A.C., AlbertiS., Halfmann R., King O., Kapila A., Lindquist S., Alberti S., King M.L., et al.111Amyloid-like Self-Assembly of a Cellular Compartment // Cell. 2016. V. 166. (3).P. 637–650.29. Bolton D.C., McKinley M.P., Prusiner S.B. Identification of a protein thatpurifies with the scrapie prion. // Science.
1982. V. 218. (4579). P. 1309–1311.30. Bonar L., Cohen A.S., Skinner M.M. Characterization of the amyloid fibril as across-beta protein. // Proc. Soc. Exp. Biol. Med. 1969. V. 131. (4). P. 1373–5.31. Bremer J., Baumann F., Tiberi C., Wessig C., Fischer H., Schwarz P., SteeleA.D., Toyka K. V, Nave K.-A., Weis J., Aguzzi A. Axonal prion protein isrequired for peripheral myelin maintenance. // Nat. Neurosci. 2010. V.
13. (3). P.310–8.32. Brini M., Miuzzo M., Pierobon N., Negro A., Sorgato M.C. The prion proteinand its paralogue Doppel affect calcium signaling in Chinese hamster ovary cells.// Mol. Biol. Cell. 2005. V. 16. (6). P. 2799–808.33. Brown D.R. Neurodegeneration and prion disease. , 2005. 1-473 p.34. Brown D.R., Schulz-Schaeffer W.J., Schmidt B., Kretzschmar H.A. PrionProtein-Deficient Cells Show Altered Response to Oxidative Stress Due toDecreased SOD-1 Activity // Exp. Neurol. 1997. V. 146. (1). P. 104–112.35.
Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C.Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. //Science. 2010. V. 329. (5999). P. 1663–7.36. Caflisch A. Computational models for the prediction of polypeptide aggregationpropensity. // Curr. Opin. Chem. Biol. 2006. V.
10. (5). P. 437–44.37. Carneiro K.M.M., Zhai H., Zhu L., Horst J.A., Sitlin M., Nguyen M., WagnerM., Simpliciano C., Milder M., Chen C.-L., Ashby P., Bonde J., Li W., HabelitzS. Amyloid-like ribbons of amelogenins in enamel mineralization. // Sci. Rep.2016. V. 6. P. 23105.38. Cascarina S.M., Ross E.D. Yeast prions and human prion-like proteins: sequencefeatures and prediction methods.
// Cell. Mol. Life Sci. 2014. V. 71. (11). P. 2047–63.11239. Chapman M.R. Role of Escherichia coli Curli Operons in Directing AmyloidFiber Formation // Science (80-. ). 2002. V. 295. (5556). P. 851–855.40. Chen R.H., Brady D.M., Smith D., Murray A.W., Hardwick K.G. The spindlecheckpoint of budding yeast depends on a tight complex between the Mad1 andMad2 proteins. // Mol. Biol. Cell. 1999.
V. 10. (8). P. 2607–18.41. Cheng F., Lindqvist J., Haigh C.L., Brown D.R., Mani K. Copper-dependent cointernalization of the prion protein and glypican-1. // J. Neurochem. 2006. V. 98.(5). P. 1445–57.42. Chernoff Y.O., Derkach I.L., Inge-Vechtomov S.G. Multicopy SUP35 geneinduces de-novo appearance of psi-like factors in the yeast Saccharomycescerevisiae // Curr. Genet. 1993.
V. 24. (3). P. 268–270.43. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W.Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor[psi+]. // Science. 1995. V. 268. (5212). P. 880–4.44. Chernoff Y.O., Newnam G.P., Kumar J., Allen K., Zink A.D. Evidence for aprotein mutator in yeast: role of the Hsp70-related chaperone ssb in formation,stability, and toxicity of the [PSI] prion.
// Mol. Cell. Biol. 1999. V. 19. (12). P.8103–12.45. Chesebro B., Race R., Wehrly K., Nishio J., Bloom M., Lechner D., BergstromS., Robbins K., Mayer L., Keith J.M. Identification of scrapie prion proteinspecific mRNA in scrapie-infected and uninfected brain. // Nature. 1985. V. 315.(6017).
P. 331–3.46. Chimileski S., Franklin M.J., Papke R. Biofilms formed by the archaeonHaloferax volcanii exhibit cellular differentiation and social motility, andfacilitate horizontal gene transfer // BMC Biol. 2014. V. 12. P. 65.47. Chiti F., Stefani M., Taddei N., Ramponi G., Dobson C.M. Rationalization ofthe effects of mutations on peptide andprotein aggregation rates // Nature.
2003.V. 424. (6950). P. 805–808.48. Claessen D., Rink R., Jong W. de, Siebring J., Vreugd P. de, Boersma F.G.H.,Dijkhuizen L., Wosten H.A.B. A novel class of secreted hydrophobic proteins is113involved in aerial hyphae formation in Streptomyces coelicolor by formingamyloid-like fibrils. // Genes Dev.