Диссертация (1145773), страница 32
Текст из файла (страница 32)
P. 125-134.304.Sun X., Zhang J., Zhang H., Ni Y., Zhang Q., Chen J., Guan Y. The responses ofArabidopsis thaliana to cadmium exposure explored via metabolite profiling // Chemosphere.2010. V.78. N.7. P. 840-845305.Tcherkez G., Mahé A., Gauthier P., Mauve C., Gout E., Bligny R., et al. In folio respiratoryfluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclicnature of the tricarboxylic acid “cycle” in illuminated leaves // Plant Physiol.
2009. V. 151.P. 620–630.306.Thomine S., Lelievre F., Debarbieux E., Schroeder J.I., Barbier- Brygoo H.. AtNRAMP3, amultispecific vacuolar metal transporter involved in plant responses to iron deficiency //Plant Journal. 2003. V. 34. P. 685-695307.Tian H., Jiang L., Liu E., Zhang J., Liu F., Peng X.
2008. Dependence of nitrate-inducedoxalate accumulation on nitrate reduction in rice leaves // Physiologia Plantarum.2008. V.133. P. 180–189.308.Tolrà R.P., Poschenrieder C., Barceló, J. Zinc hyperaccumulation in Thlaspi caerulescens. II.Influence on organic acids // Journal of Plant Nutrition. 1996. V. 19. P. 1541–1550.309.Tommasini R., Vogt E., Fromenteau M., Hortensteiner S., Matile P., Amrhein N., MartinoiaE.
An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate andchlorophyll catabolite transport activity // The Plant Journal. 1998. V. 13. P. 773-780.310.Tooulakou G., Giannopoulos A., Nikolopoulos D., Bresta P., Dotsika E., Orkoula M.G.,Kontoyannis C.G., Fasseas C., Liakopoulos G., Klapa M.I., Karabourniotis G. Alarm174Photosynthesis: Calcium Oxalate Crystals as an Internal CO2 Source in Plants // PlantPhysiology. 2016.
Vol. 171. N.4. P. 2577–2585.311.Touraine B, Grignon N, Grignon C. Charge Balance in NO3−-Fed Soybean: Estimation of K+and Carboxylate Recirculation // Plant Physiology. 1988. V. 88. P. 605-612.312.Touraine B, Muller B, Grignon C. Effect of phloem-translocated malate on NO3- uptake byroots of intact soybean plants. Plant Physiol.
1992. V. 93. P. 1118-1123.313.Tsonev T., Lidon F.J.C. Zinc in plants - an over review // Emir.J.Food Agric. 2012. V. 24. N.4. P. 322-333.314.Tuazon-Nartea J, Savage G. Investigation of Oxalate Levels in Sorrel Plant Parts and SorrelBased Products // Food and Nutrition Sciences. 2013. V. 4. P. 838-843.315.Turan M., Sevimli F.
Influence of different nitrogen sources and levels on ion content ofcabbage (Brassica oleracea var. capitate) // N. Z. J. Crop Hort. Sci. 2005. V. 33. P. 241–249.316.Turgut C., Pepe M.K., Cutright T.J. The effect of EDTA and citric acid on phytoremediationof Cd, Cr, and Ni from soil using Helianthus annuus // Environ. Pollution. 2004.
V. 131. P.147-154.317.Ueno D, Zhao F.-J., Ma F. Interactions between Cd and Zn in relation to theirhyperaccumulation in Thlaspi caerulescens//Soil Sci. Plant Nutrion. 2004. V. 50. №4. P.591597.318.Uraguchi S., Fujiwara T. Rice breaks ground for cadmium-free cereals // Plant Biol. 2013.V.16. P.328-334.319.Uveges J.L. Corbett., A.L, Mal T.K. Effects of lead contamination on the growth of Lythrumsalicaria//Environmental Pollution. 2002. V. 120.
P. 319-323.320.Vahedi A. The Absorption and metabolism of heavy metals and mineral matters in thehalophyte plant Artemisia aucheri // International Journal of Biology. 2013. V. 5. P. 63-70.321.Van Belleghem F., Cuipers A., Semane B., Smeets K., Vangronsveld J., d'Haen J., Valcke R.Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana // NewPhytol. 2007.
V. 173. P. 395-507.322.Vassilev A., Tsonev T., Yordanov I. Physiological response of barley plants (Hordeumvulgare L) to cadmium contamination in soil during ontogenesis // Environ. Pollut. 1998. V.103. P. 289–297.323.Vassilev A. Physiological and agroecological aspects of cadmium interactions with barleyplants: an overview // J. Central Eur. Аgric. 2002. V. 4, N 1. P. 65 -74.175324.Vázquez S., Goldsbrough P., Carpena R. O. Assessing the relative contributions ofphytochelatins and cell wall to cadmium resistance in white lupin // Physiol.
Plant. 2006. V.128. P. 487 495.325.Verbruggen N., Hermans C., Schat H. Mechanisms to cope with arsenic or cadmium excessin plants // Current Opinion in Plant Biology. 2009. V. 12. P. 364-372.326.von Wiren N., Marschner H., Romheld V. Roots of iron-efficient maize also absorbphytosiderophore-chelated zinc // Plant Physiol. 1996. V. 22. P. 1119-1125.327.Vert G., Grotz N., De´ dalde´champ F., Gaymard F., Guerinot M.
L., Briat J. F., Curie C.IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth //The Plant Cell. 2002. V. 14. P. 1223–1233.328.Vityakon P., Standal B. R. Oxalate in vegetable Amaranth (Amaranthus gangeticus). forms,contents, and their possible implications for human health.
// J. Sci. Food Agric. 1989. V. 48.P. 469–474.329.Wahid A, Ghani A, Ali I, Ashraf M.Y. Effects of cadmium on carbon and nitrogenassimilation in shoots of mungbean Vigna radiata (L.) Wilczek seedlings // J Agron CropSci. 2007. V. 193. P. 357–365.330.Wang Yan, Liang Xu, Hong Shen, Juanjuan Wang, Wei Liu, Xianwen Zhu, Ronghua Wang,Xiaochuan Sun, Liwang Liu. Metabolomic analysis with GC-MS to reveal potentialmetabolites and biological pathways involved in Pb & Cd stress response of radish roots //Scientific Reports| 5:18296 | DOI: 10.1038/srep18296331.Wang L, Zhou Q.X., Ding L.L., Sun Y.B.
Effect of cadmium toxicity on nitrogenmetabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator //Journal of Hazardous Materials. 2008, V. 154. P. 818825.332.Watanabe Y., Fujii N., Terayama H., Watanabe M., Shimada N. Comparison of EnzymeActivities in Oxalate Synthesis between Spinacia oleracea L. and Brassica carnpestris L //Soil Sci Plant Nutr. 1995. V. 41. №.1. P.
89-94.333.Watanabe T., Murata Y., Osaki M. Amaranthus tricolor has the potential forphytoremediation of cadmium-contaminated soils // Communications in Soil Science andPlant Analysis. 2009. V. 40. P. 3158–3169.334.Webb M. A. Cell-mediated crystallization of calcium oxalate in plants // Plant Cell.1999. V.11. P. 751–761.335.White P.J., Broadley M.R. Calcium in plants//Annals of Botany. 2003. V.
92. P. 487-511.176336.Williams L.E., Mills R.F. P1B-ATPases-an ancient family of transition metal pumps withdiverse functions in plants// Trends in plant science. 2005. V. 10. N10. P. 491-502.337.Wittek F., Hoffmann T., Kanawati B., Bichlmeier M., Knappe C., Wenig M., SchmittKopplin F., Parker J.E., Schwab W., Vlot A.C. Arabidopsis ENHANCED DISEASESUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor9-oxo nonanoic acid // Journal of Experimental Botany. 2014. V. 65, No. 20. P.
5919–5931.338.Wójcik M., Skórzynska-Polit E., Tukiendorf A. Organic acids accumulation and antioxidantenzyme activities in Thlaspi caerulescens under Zn and Cd stress // Plant Growth Regulation.2006. V. 48. P. 145–155.339.Wong C.K.E., Cobbett C.S. HMA P-type ATPases are the major mechanism for root-toshoot Cd translocation in Arabidopsis thaliana // New Phytol.
2008. V. 181. P. 71-78.340.Wu F.B. Zhang G. Genotypic variation in kernel heavy metal concentrations in barley and asaffected by soil factors // J. Plant Nutri. 2002. V. 25. P. 1163-1173.341.Wu F.-B., Chen F., Wei K., Zhang G.-P. Effects of cadmium on free amino acid, glutathioneand ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing incadmium tolerance // Chemosphere. 2004. V. 57. P.
447-454.342. Wu X., Li R., Shi J., Wang J., Su n Q., Zhang H., Xing Y., Qi Y., Zhang N., Guo Y. D.Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance inArabidopsis thaliana // Plant Cell Physiol. 2014. V. 55. P. 1426–1436.343.Xie Y., Jiang R.F., Zhang F.S., McGrath S., Zhao F.
Effect of nitrogen form on therhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspicaerulescens // Plant Soil. 2009. V. 318: P. 205–215.344.Xie Y. et al. Effects of cadmium exposure on growth and mеtabolite profile of Bermudagrass// PLoS ONE. 2014. V. 9. №. 12. P.1-20.345.Xu H. W., Ji X. M., He Z. H., Shi W. P. H., Niu J.