Диссертация (1145773), страница 28
Текст из файла (страница 28)
L. Physiological and molecularanalysis of aluminium-induced organic acid anion secretion from grain amaranth(Amaranthus hypochondriacus L.) roots // Int. J. Mol. Sci. 2016. V. 17: P. 608.106.Fang H, Xiao-Quan Sh., Jingo Zh., Yawning X,. Zhi-Guo P., Shu-Zhen Zh, Yong-GuanZh.and. Bei W. Organic acids promote the uptake of lanthanum by barley roots //NewPhytologist.
2005. V. 165. P. 481-492.107.Foster J., Luo B., Nakata P. A. Anoxalyl-Co Adependent pathway of oxalate catabolismplays a role in regulating calcium oxalate crystal accumulation and defending againstoxalate-secreting phytopathogens in Medicago truncatula. //PLoS ONE. 2016. 11: e0149850.doi: 10.1371/journal.pone.0149850.157108.Franceschi V. R., Horner H.T. Calcium Oxalate Crystals in Plants // The Botanical Riview.1980. V 46.
№. 4. P. 361-427.109.Franceschi V.R. Calcium oxalate formation is a rapid and reversible process in Lemna minorL // Protoplasma. 1989. V. 148. P. 130-137.110.Franceschi V. R., Nakata P. A. Calcium oxalate in plants: formation and function// Annu.Rev. Plant Biol. 2005. V. 56. P. 41– 71.111.Freisinger E. The Metal-thiolate clusters of plant metallothioneins //Chimia. 2010. V.
64.№4. P. 217-224.112.Gadd G.M. Fungal production of citric and oxalic acid: importance in metal speciation,physiology and biogeochemical processes // Adv. Microb. Physiol. 1999. V. 41. P. 47-92.113.Ganesh K.S., Baskaran L., Rajasekaran S., Sumathi K., Chidambaram A.L.A.,Sundaramoorthy P. Chromium stress induced alterations in biochemical and enzymemetabolism in aquatic and terrestrial plants // Colloids Surface B. 2008.
V. 63. P. 159-163.114.Gelines B, Seguin P. Oxalate in Grain Amaranth // J. Agric. Food Chem. 2007. V. 55. №. 12P. 4789–4794.115.Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel H. M. Cadmiumeffects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum andMesembryanthemum crystallinum // J. Plant Physiol. 2005.
V. 162. P. 1133–1140.116.Gill S.S., Khan N.A., Anjum N.A., Tuteja N. Amelioration of cadmium stress in crop plantsby nutrients management: morphological, physiological and biochemical aspects. PlantStress. 2011. V. 5. №. 1. P. 1–23.117.Gillaspy G. E. The cellular language of myo-inositol signaling// New Phytologist. 2011.
V.192. P. 823–839118.Gmelin L, Watts H. Hanbook of chemistry, Cavendish Society, London, UK, 1885. V. 9. P.111.119.Godavari H. R., Badour S. S., Waygood E. R. Isocitrate Lyase in Green Leaves // PlantPhysiology. 1973. V. 51. №. 5. P. 863-867.120.Godbold D.L., Horst W.J., Collins J.C., Thurman D.A., Marschner H.. Accumulation of zincand organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsiacaespitosa //Journal of Plant Physiology. 1984. V. 116. P. 59-69121.Gonçalves J.F., Antes F.G., Maldaner J., Pereira L.B., Tabaldi L.A., Rauber R., RossatoL.V., Bisognin D.A., Dressler V.L., de Moraes Flores E.M., Nicoloso F.T. Cadmium and158mineral nutrient accumulation in potato plantlets grown under cadmium stress in twodifferent experimental culture conditions //Plant Physiology and Biochemistry. 2009.
V.47.P. 814–821122.Gong J.M., Lee D.A., Schroeder J.I. Long-distance root-to-shoot transport of phytochelatinsand cadmium in Arabidopsis // Proc. Natl. Acad. Sci. USA. – 2003. – Vol. 100. – pp. 1011810123.123.Gopal R., Rizvi A.H. Excess lead alters growth, metabolism and translocation of certainnutrients in radish // Chemosphere. 2008. V. 70. P.
1539-1544.124.Gouia H., Gorbel M.H., Meyer C. Effects of cadmium on activity of nitrate reductase and onother enzymes of the nitrate assimilation pathway in bean // Plant Physiol. Biochem. 2000.V. 38. P. 629–638.125.Gouia H., Suzuki A., Brulfert J., Ghorbal M.H. Effects of cadmium on the co-ordination ofnitrogen and carbon metabolism in bean seedlings // J.Plant Physiol. 2003. V. 160. P.367–376.126.Green M.A, Fry S.C. Apoplastic degradation of ascorbate: novel enzymes and metabolitespermeating the plant cell wall // Plant Biosystems.
2005a. V. 139: P. 2–7.127.Green M.A, Fry S.C. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4- Ooxalyl-l-threonate // Nature. 2005b. V. 433. P. 83-87.128.Green C.E., Chaney R.L., Bouwkamp J. Interactions between cadmium uptake andphytotoxic levels of zinc in hard red spring wheat // J. Plant Nutr. 2006. V. 26. P. 417–430.129.Greger M., Johansson M.
Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris)// Physiologia Plantarum. 1992. V 86. P. 465–473.130.Grill E., Löffler S., Wiannacker E. L., Zenk M. H. Phytochelatins, the heavy metals bindingpeptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteinedipeptidyl transpeptidase (phytochelatin synthase) // Proc. Natl. Acad. Sci. USA.
1989. V.86. P. 6838-6842.131.Guo T.R., Zhang G.P., Zhou M.X., Wu F.B., Chen J.X. Influence of Aluminum andCadmiumstressesonMineralNutritionandRootExudatesinTwoBarleyCurtivars//Pedosphere. 2007. V. 17. №4. P. 505-512.132.Guo R., Yang Z., Li F., Yan C., Zhong X., Liu Q., Xia X., Li H., Zhao L. Comparativemetabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkalistress // BMC Plant Biology.
2015. V. 15: 170159133.Gupta K. J., Shah J. K., Brotmann Y., Willmitzer L., Kaiser W. M., Bauwe H., et al.Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to ashift of metabolism towards biosynthesis of amino acids // J. Exp. Bot. 2012. V. 63. P. 1773–1784.134.Hagemeyer J. Ecophysiology of plant growth under heavy metal stress // In: Prasad MNV(ed.) Heavy metal stress in plants/ 2-nd edn.
Springer, Berlin. 2004. P. 201-222.135.Hall J. L. Cellular mechanisms for heavy metal detoxification and tolerance // J. Exp. Bot.2002. V. 53. N. 366. P. 1-11.136.Hall J.L., Williams L.E. Transition metal transporters in plants // J. Exp. Bot. 2003. V.54. P.2601-2613.137.Hasegawa, F. Shinmachi, A. Noguchi, J. Yazaki. Physiological characterization of root cellCd2+ absorbtion and translocation to shoots in Brassica//Plant nutrion.
2001. V. 92. P. 448449.138.Hassan Z., Aarts M.G.M. Opportunities and feasibilities for biotechnological improvementof Zn, Cd or Ni tolerance and accumulation in plants // Envirron. Exp. Bot. 2011. V. 72. P.53-63.139.Havir E. A. Oxalate metabolism by tobacco leaf discs // Plant Physiology. 1984. V. 75. P.505-507.140.Haydon M.J., Cobbett C.S. Transporters of ligands for essential metal ions in plants // NewPhytol. 2007. V. 174. P. 499-506141.Hediji H. et al. Effects of long-term cadmium exposure on growth and metabolomic profileof tomato plants // Ecotoxicol.
Environ.Saf. 2010. V.73. P.1965-1974.142.Hernandez L.E., Carpena-Ruiz R., and Garate A. Alterations in the Mineral Nutrition of PeaSeedlings Exposed to Cadmium // Journal of Plant Nutrition. 1996. V 19. P. 1581-1598.143.L.E. Hernandez, A. Garate and R. Carpena-Ruiz. Effects of cadmium on the uptake,distribution and assimilation of nitrate in Pisum sativum // Plant and Soil. 1997. V.
189. P.97–106.144.Hinsinger P., Plasard C., Jailard B.. Rhizosphere: a new frontier for soil biogeochemistry //Journal of Geochemical Exploration. – 2005. – Vol. 88. – pp. 210-213.145.Hirschi K.D., Zhen R.G., Cunningham K.W, Rea P.A., Fink G. R.. CAX1, an H+/Ca2+antiporter from Arabidopsis//Proc. Natl. Acad. Sci. USA. 1996.
V. 93. №16. P. 8782–8786.160146.Hirschi K., Korenkov V., Wilganowski N. Expression of Arabidopsis CAX2 in tobacco.Altered metal accumulation and increased manganese tolerance //Plant Physiology. 2000.V.124. №1. P. 125–134.147.Horner H.T, Kausch A.P, Wagner B.L. Ascorbic acid: a precursor of oxalate in crystalidioblasts of Yucca torreyi in liguid root culture // International Journal of Plant Science.2000.
V. 161. P. 861-868.148.Howden R., Cobbett C.S. Cadmium-Sensitive Mutants of Arabidopsis thaliana.//PlantPhysiology. 1992. V.100. №1/ P.100-107.149.Hu P.J., Yin Y.G., Ishikawa S., Suzui N., Kawachi N., Fujimaki S., Igura M., Yuan C.,Huang J., Li Z., Makino T., Luo Y., Christie P., Wu L. Nitrate facilitates cadmium uptake,transport andaccumulationinthe hyperaccumulator Sedumplumbizincicola //Environmental Science and Pollution Research.
2013. V. 20. P. 6306–6316.150.Huang Y.-Z., Wei K., Yang J., Dai F., Zhang G.- P. Interaction of salinity and cadmiumstresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes //Journal of Zhejiang University. 2007. V. 8. P.476-485.151.Igamberdiev A.U., Eprintsev A.T. Organic acids: the pools of fixed carbon involved in redoxregulation and energy balance in higher plants // Front. Plant Sci. 2016. V. 7: 1042.doi:10.3389/fpls.2016.01042.1042152.Igamberdiev A.
U., Gardeström P. Regulation of NAD- and NADP-dependent isocitratedehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol ofpea leaves // Biochim. Biophys. Acta. 2003. V. 1606. P. 117–125.153.Igamberdiev A. U., Lea P. J. The role of peroxisomes in the integration of metabolism andevolutionary diversity of photosynthetic organisms // Phytochemistry. 2002. V. 60.
P. 651–674.154.Igamberdiev A.U., Zemlyanukhin A.A., Rodionova L.G. Glycolate oxidase from wheat andsugarbeet leaves – catalytic properties and role in oxalate biosynthesis // Biochemistry. 1988.V. 53. P. 1499-1505.155.Imas P., Bar-Yousef B., Kafkafi U., Ganmore-Neumann.
Release of carboxylic anions andprotons by tomato roots in response to ammonium nitrate ratio and pH nutrientsolution//Plants and Soil. 1997. V. 191. P. 27-34.156.Imsande J, Touraine B. 1994. N demand and the regulation of nitrate uptake // PlantPhysiology. 1994. V. 105. P. 3–7.161157.Ivanov B.F., Igamberdiev A. U., Zemlyanukhin A. A. Non-photosynthetic utilization ofexogenous 14C oxalate by pea and rice seedlings exposed in the helium and carbon-dioxidemedia. Fiziologiya I Biokhimiya Kulturnykh Rastenii.