Диссертация (1145422), страница 46
Текст из файла (страница 46)
Крамер, Х. Штефани, М. Мак-Каллум, Э. Херльт, “Точные решения уравнений Эйнштейна”, Энергоиздат, Москва, 1982.[102] E. Kasner, “The Impossibility of Einstein Fields Immersed in Flat Spaceof Five Dimensions”, Am. J. Math., 43: 2 (1921), 126–129.281[103] J. Rosen, “Embedding of Various Relativistic Riemannian Spaces inPseudo-Euclidean Spaces”, Rev.
Mod. Phys., 37: 1 (1965), 204–214.[104] H. Goenner, “Local Isometric Embedding of Riemannian Manifoldsand Einstein’s Theory of Gravitation”, in General Relativity andGravitation: One Hundred Years after the birth of Albert Einstein, editedby A. Held, vol. 1, chap. 14, 441–468, Plenum Press, New York, 1980.[105] E.M. Monte, “Embedding Versus Immersion in General Relativity”, Int.J. Mod.
Phys. A, 24 (2009), 1501–1504, arXiv:0908.3320.[106] D. N. Blaschke, H. Steinacker, “Schwarzschild geometry emergingfrom matrix models”, Class. Quant. Grav., 27 (2010), 185020,arXiv:1005.0499.[107] S. A. Paston, “When does the Hawking into Unruh mapping for globalembeddings work?”, JHEP, 06 (2014), 122, arXiv:1402.3975.[108] S.
A. Paston, “Hawking into Unruh mapping for embeddings ofhyperbolic type”, Class. Quant. Grav., 32: 14 (2015), 145009,arXiv:1411.4329.[109] С. А. Пастон, “Связь между квантовыми эффектами в ОТО и втеории вложения”, Теоретическая и математическая физика, 185:1 (2015), 162–178.[110] Н. Биррелл, П. Девис, “Квантованные поля в искривленномпространстве-времени”, Мир, Москва, 1984.[111] А. А. Гриб, С. Г. Мамаев, В. М. Мостепаненко, “Квантовые эффекты в интенсивных внешних полях”, Атомиздат, Москва, 1980.[112] S.
W. Hawking, “Particle Creation by Black Holes”, Commun. Math.Phys., 43 (1975), 199–220.[113] W. G. Unruh, “Notes on black-hole evaporation”, Phys. Rev. D, 14(1976), 870–892.[114] M. Beciu, H. Culetu, “Embedding as a substitute for the Kruskalmaximal extension”, Mod. Phys. Lett. A, 14: 1 (1999), 1–8.282[115] T. Padmanabhan, “Thermodynamics and/of Horizons: A Comparison ofSchwarzschild, RINDLER and desitter Spacetimes”, Mod. Phys. Lett.A, 17 (2002), 923–942, arXiv:gr-qc/0202078.[116] P. K. Townsend, “Black Holes”, 1997, arXiv:gr-qc/9707012.[117] W. Rindler, “Kruskal Space and the Uniformly Accelerated Frame”, Am.J. Phys., 34: 12 (1966), 1174–1178.[118] J. R.
Letaw, “Quantized scalar field in rotating coordinates”, Phys. Rev.D, 22: 6 (1980), 1345–1351.[119] E. T. Akhmedov, Singleton D., “On the physical meaning of theUnruh effect”, Pisma Zh. Eksp. Teor. Fiz., 86 (2007), 702–706,arXiv:0705.2525.[120] J. R. Letaw, “Stationary world lines and the vacuum excitation ofnoninertial detectors”, Phys. Rev. D, 23 (1981), 1709–1714.[121] S. Abdolrahimi, “Velocity Effects on an Accelerated UnruhDeWitt Detector”, Class. Quantum Grav., 31 (2014), 135009,arXiv:1304.4237.[122] L. C.
Barbado, M. Visser, “Unruh-DeWitt detector event rate fortrajectories with time-dependent acceleration”, Phys. Rev. D, 86 (2012),084011, arXiv:1207.5525.[123] Y.-W. Kim, Y.-J. Park, K.-S. Soh, “Reissner-Nordstrom-AdS black holein the GEMS approach”, Phys. Rev. D, 62 (2000), 104020, arXiv:grqc/0001045.[124] N. L. Santos, O. J. C. Dias, J. P. S. Lemos, “Global embeddingof D-dimensional black holes with a cosmological constant inMinkowskian spacetimes: Matching between Hawking temperature andUnruh temperature”, Phys. Rev. D, 70 (2004), 124033, arXiv:hepth/0412076.[125] R.-G. Cai, Y.
S. Myung, “Hawking temperature for constant curvatureblack hole and its analogue in de Sitter space”, Phys. Rev. D, 83 (2011),107502, arXiv:1012.5709.283[126] S.-T. Hong, W. T. Kim, J. J. Oh, Y.-J. Park, “Higher dimensional flatembeddings of black strings in (2+1) dimensions”, Phys. Rev. D, 63(2001), 127502, arXiv:hep-th/0103036.[127] S.-T. Hong, S.-W.
Kim, “Can wormholes have negative temperatures?”,Mod. Phys. Lett. A, 21 (2006), 789–794, arXiv:gr-qc/0303059.[128] Y.-W. Kim, J. Choi, Y.-J. Park, “Local free-fall Temperature of GMGHSBlack Holes”, Phys. Rev. D, 89 (2014), 044004, arXiv:1311.0592.[129] H.-Z. Chen, Y. Tian, Y.-H. Gao, X.-C. Song, “The GEMS Approach toStationary Motions in the Spherically Symmetric Spacetimes”, JHEP,10 (2004), 011, arXiv:gr-qc/0409107.[130] E.
J. Brynjolfsson, L. Thorlacius, “Taking the Temperature of a BlackHole”, JHEP, 09 (2008), 066, arXiv:0805.1876.[131] R. Banerjee, B. R. Majhi, D. Roy, “Corrections to Unruh effectin tunneling formalism and mapping with Hawking effect”, 2009,arXiv:0901.0466.[132] R. Banerjee, B. R. Majhi, “A New Global Embedding Approach toStudy Hawking and Unruh Effects”, Phys. Lett.
B, 690 (2010), 83–86,arXiv:1002.0985.[133] S. Willison, “AdS spacetimes and isometric embeddings”, in Relativityand Gravitation, 100 Years after Einstein in Prague, edited byJ. Bicak, T. Ledvinka, 319–322, Springer Proceedings in Physics, 2014,arXiv:1302.1762.[134] S. Willison, 2014, private communication.[135] M. Bertola, D. Gouthier, “Warped products with special Riemanniancurvature”, Bol.
Soc. Bras. Mat., 32 (2001), 45–62.[136] S. J. Brodsky, V. A. Franke, J. R. Hiller, G. McCartor, S. A. Paston,E. V. Prokhvatilov, “A nonperturbative calculation of the electron’smagnetic moment”, Nucl. Phys. B, 703 (2004), 333–362, arXiv:hepph/0406325.284[137] С. А. Пастон, Е. В. Прохватилов, В. А. Франке, “Калибровочноинвариантная регуляризация квантовой теории поля на световомфронте”, Теоретическая и математическая физика, 139: 3 (2004),429–447, arXiv:hep-th/0303180.[138] M.
S. Karnevskiy, S. A. Paston, “Feynman perturbation theory for gaugetheory on transverse lattice”, International Journal of Modern PhysicsA, 25 (2010), 3621–3640, arXiv:1009.2238.[139] М. С. Карневский, С. А. Пастон, “Использование теории возмущений в светоподобной калибровке для модели Янга-Миллса напоперечной решетке”, Вестник СПбГУ, Сер. 4, 4 (2009), 303–320.[140] Е.-М. Ильгенфриц, С. А.
Пастон, Г.-Ю. Пирнер, Е. В. Прохватилов,В. А. Франке, “Квантовые поля на световом фронте, формулировкав координатах, близких к световому фронту, решеточное приближение”, Теоретическая и математическая физика, 148: 1 (2006),89–101, arXiv:hep-th/0610020.[141] P. M. Stevenson, “Gaussian effective potential. II. 4 field theory”,Phys. Rev. D, 32 (1985), 1389–1408.[142] А. М. Анненкова, Е.
В. Прохватилов, В. А. Франке, “Вычислениемезонных масс при квантовании на световом фронте”, Ядерная физика, 56: 6 (1993), 179–200.[143] Е. В. Прохватилов, В. А. Франке, “Предельный переход к светоподобным координатам в теории поля и КХД-гамальтониан”, Ядернаяфизика, 49: 4 (1989), 1109–1117.[144] E.
V. Prokhvatilov, H. W. L. Naus, H.-J. Pirner, “Effective lightfront quantization of scalar field theories and two-dimensionalelectrodynamics”, Phys. Rev. D, 51 (1995), 2933–2942.[145] Wei-Min Zhang, Avaroth Harindranath, “Light-front QCD. I. Role oflongitudinal boundary integrals”, Phys. Rev. D, 48 (1993), 4868–4880.[146] Wei-Min Zhang, Avaroth Harindranath, “Light-front QCD. II. Twocomponent theory”, Phys. Rev. D, 48 (1993), 4881–4902.285[147] Avaroth Harindranath, Wei-Min Zhang, “Light-front QCD. III. Couplingconstant renormalization”, Phys. Rev. D, 48 (1993), 4903–4915.[148] M. Yu. Malyshev, S.
A. Paston, E. V. Prokhvatilov, R. A.Zubov, “Renormalized Light Front Hamiltonian in the Pauli-VillarsRegularization”, International Journal of Theoretical Physics, 54: 1(2015), 169–184, arXiv:1311.4381.[149] M. Yu. Malyshev, S. A. Paston, E. V. Prokhvatilov, Zubov R. A., V. A.Franke, “Pauli-Villars Regularization in nonperturbative Hamiltonianapproach on the Light Front”, AIP Conference Proceedings, In print,arXiv:1504.07951.[150] S.
Coleman, R. Jackiw, L. Susskind, “Charge shielding and quarkconfinement in the massive Schwinger model”, Annals of Physics, 93(1975), 267–275.[151] S. J. Brodsky, J. R. Hiller, G. McCartor, “Pauli-Villars as aNonperturbative Ultraviolet Regulator in Discretized Light-ConeQuantization”, Phys.
Rev. D, 58: 2 (1998), 025005, arXiv:hepth/9802120.[152] S. J. Brodsky, J. R. Hiller, G. McCartor, “Application of PauliVillars regularization and Discretized Light-Cone Quantization to a(3+1)-Dimensional Model”, Phys. Rev. D, 60: 5 (1999), 054506,arXiv:hep-ph/9903388.[153] S. J. Brodsky, J. R. Hiller, G. McCartor, “Application of PauliVillars regularization and discretized light-cone quantization to a singlefermion truncation of Yukawa theory”, Phys.
Rev. D, 64: 11 (2001),114023, arXiv:hep-ph/0107038.[154] S. J. Brodsky, J. R. Hiller, G. McCartor, “Exact Solutions to PauliVillars-Regulated Field Theories”, Ann. Phys., 296: 2 (2002), 406–424,arXiv:hep-th/0107246.[155] H.-J. Pirner, “The color dielectric model of {QCD}”, Progress inParticle and Nuclear Physics, 29 (1992), 33–85.[156] W.
A. Bardeen, R. B. Pearson, “Local gauge invariance and the boundstate nature of hadrons”, Phys. Rev. D, 14 (1976), 547–551.286[157] M. Burkardt, S. Dalley, “The relativistic bound state problem in QCD:transverse lattice methods”, Progress in Particle and Nuclear Physics,48: 2 (2002), 317–362, arXiv:hep-ph/0112007.[158] S. Dalley, “Transverse Lattice”, Nucl. Phys. Proc. Suppl., 90 (2000),227–232, arXiv:hep-ph/0007081.[159] S. Dalley, “Introduction to transverse lattice gauge theory”, AIP Conf.Proc., 494 (1999), 45–64, arXiv:hep-lat/9912010.[160] Stanley Mandelstam, “Light-cone superspace and the ultravioletfiniteness of the N=4 model”, Nuclear Physics B, 213: 1 (1983), 149 –168.[161] George Leibbrandt, “Light-cone gauge in Yang-Mills theory”, Phys.Rev.