Диссертация (1145323), страница 41
Текст из файла (страница 41)
— 2012. — Vol. 12. — Pp. 4025–4031.[129] Ying Wang, Yuyan Shao, Dean W. Matson, Jinghong Li, , Yuehe Lin. Nitrogen-DopedGraphene and Its Application in Electrochemical Biosensing // ACS Nano. — 2010. — Vol. 4. —Pp. 1790–1798.[130] Arava Leela Mohana Reddy, Anchal Srivastava, Sanketh R. Gowda, Hemtej Gullapalli, MadanDubey, , Pulickel M. Ajayan. Synthesis Of Nitrogen-Doped Graphene Films For Lithium BatteryApplication // ACS Nano. — 2010. — Vol. 4.
— Pp. 6337–6342.[131] Liangti Qu, Yong Liu, Jong-Beom Baek, Liming Dai. Nitrogen-Doped Graphene as Efficient240Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells // ACS Nano. — 2010. — Vol. 4. —Pp. 1321–1326.[132] E. H. Åhlgren, J.
Kotakoski, A. V. Krasheninnikov. Atomistic simulations of the implantationof low-energy boron and nitrogen ions into graphene // Phys. Rev. B. — 2011. — Vol. 83. —P. 115424.[133] P. Ayala, F. L. Freire Jr., M. H. Rümmeli, A. Grüneis, T. Pichler. Chemical Vapor Depositionof Functionalized Single-Walled Carbon Nanotubes with defined nitrogen doping // Phys. StatusSolidi. — 2007. — Vol. 244. — Pp.
40–51.[134] Xinran Wang, Xiaolin Li, Li Zhang, Youngki Yoon, Peter K. Weber, Hailiang Wang, Jing Guo,Hongjie Dai. N-Doping of Graphene Through Electrothermal Reactions with Ammonia // Science. — 2009. — Vol. 324. — Pp. 768–771.[135] Zhengzong Sun, Zheng Yan, Jun Yao, Elvira Beitler, Yu Zhu, James M. Tour. Growth of graphenefrom solid carbon sources // Nature. — 2010. — Vol. 468. — Pp. 549–552.[136] Zhong Jin, Jun Yao, Carter Kittrell, James M.
Tour. Large-scale Growth and Characterizations ofNitrogen-doped Monolayer Graphene Sheets // ACS Nano. — 2011. — Vol. 5. — Pp. 4112–4117.[137] Yung-Chang Lin, Chih-Yueh Lin, Po-Wen Chiu. Controllable graphene N-doping with ammoniaplasma // Appl. Phys. Lett. — 2010. — Vol.
96. — P. 133110.[138] R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, D. L. Carroll. Identification of ElectronDonor States in N-Doped Carbon Nanotubes // Nano Lett. — 2001. — Vol.
1. — Pp. 457–460.[139] M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D.L.Carroll, J. C. Charlier, R. Czerw, B. Foley,N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones. N-doping andcoalescence of carbon nanotubes: synthesis and electronic properties // Appl. Phys. A. — 2002. —Vol. 74. — Pp. 355–361.[140] P. Ayala, A.
Grüneis, C. Kramberger, M. H. Rümmeli, I. G. Solórzano, F. L. Freire Jr., T. Pichler.Effects of the reaction atmosphere composition on the synthesis of single and multiwallednitrogen-doped nanotubes // J. Chem. Phys. — 2007. — Vol. 127. — P. 184709.[141] Seong Ho Yang, Weon Ho Shin, Jeung Ku Kang. The Nature of Graphite- and PyridinelikeNitrogen Configurations in Carbon Nitride Nanotubes: Dependence on Diameter and Helicity //Small. — 2008. — Vol. 4.
— Pp. 437–441.241[142] Yong Jae Cho, Han Sung Kim, Sun Young Baik, Yoon Myung, Chan Su Jung, Chang Hyun Kim,Jeunghee Park, Hong Seok Kang. Selective Nitrogen-Doping Structure of Nanosize GraphiticLayers // J. Phys. Chem. C. — 2011. — Vol. 115. — Pp. 3737–3744.[143] Yuyan Shao, Sheng Zhang, Mark H. Engelhard, Guosheng Li, Guocheng Shao, Yong Wang, JunLiu, Ilhan A. Aksay, Yuehe Lin. Nitrogen-doped graphene and its electrochemical applications //J. Mater.
Chem. — 2010. — Vol. 20. — Pp. 7491–7496.[144] Zhiqiang Luo, Sanhua Lim, Zhiqun Tian, Jingzhi Shang, Linfei Lai, Brian MacDonald, Chao Fu,Zexiang Shen, Ting Yu, , Jianyi Lin. Pyridinic N doped graphene: synthesis, electronic structure,and electrocatalytic property // J. Mater. Chem. — 2011. — Vol. 21.
— Pp. 8038–8044.[145] Gaku Imamura, Koichiro Saiki. Synthesis of Nitrogen-Doped Graphene on Pt(111) by ChemicalVapor Deposition // J. Phys. Chem. C. — 2011. — Vol. 115. — Pp. 10000–10005.[146] U. Bangert, W. Pierce, D. M. Kepaptsoglou, Q. Ramasse, R. Zan, M. H. Gass, J. A. Van den Berg,C. B. Boothroyd, J. Amani, H. HofsГ¤ss. Ion Implantation of Graphene – Toward IC CompatibleTechnologies // Nano Lett. — 2013. — Vol. 13.
— Pp. 4902–4907.[147] Beidou Guo, Qian Liu, Erdan Chen, Hewei Zhu, Liang Fang, Jian Ru Gong. ControllableN-Doping of Graphene // Nano Lett. — 2010. — Vol. 10. — Pp. 4975–4980.[148] Chaohua Zhang, Lei Fu, Nan Liu, Minhao Liu, Yayu Wang, Zhongfan Liu. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources // Adv. Mater. — 2011. —Vol.
23. — Pp. 1020–1024.[149] Seifollah Jalili, Raheleh Vaziri. Study of the electronic properties of Li-intercalated nitrogendoped graphite // Mol. Phys. — 2011. — Vol. 109. — Pp. 687–694.[150] Aurélien Lherbier, Andrés Rafael Botello-Méndez, Jean-Christophe Charlier. Electronic andTransport Properties of Unbalanced Sublattice N-Doping in Graphene // Nano Lett. — 2013.
—Vol. 13. — Pp. 1446–1450.[151] James A. Lawlor, Mauro S. Ferreira. Sublattice Asymmetry of Impurity Doping in Graphene: AReview // Beilstein J. Nanotechnol. — 2014. — Vol. 5. — Pp. 1210–1217.[152] Amir Zabet-Khosousi, Liuyan Zhao, Lucia Pálová, Mark S. Hybertsen, David R. Reichman,Abhay N. Pasupathy, George W. Flynn.
Segregation of Sublattice Domains in Nitrogen-DopedGraphene // J. Am. Chem. Soc. — 2014. — Vol. 136. — Pp. 1391–1397.242[153] Xinyu Luo, Jihui Yang, Hanyu Liu, Xiaojun Wu, Yanchao Wang, Yanming Ma, Su-Huai Wei,Xingao Gong, Hongjun Xiang. Predicting Two-Dimensional Boron–Carbon Compounds by theGlobal Optimization Method // J.
Am. Chem. Soc. — 2011. — Vol. 133. — Pp. 16285–16290.[154] Xiaofeng Fan, Zexiang Shen, A. Q. Liu, Jer-Lai Kuo. Band gap opening of graphene by dopingsmall boron nitride domains // Nanoscale. — 2012. — Vol. 4. — Pp. 2157–2165.[155] Paolo Marconcini, Alessandro Cresti, François Triozon, Gianluca Fiori, Blanca Biel, Yann-Michel Niquet, Massimo Macucci, Stephan Roche. Atomistic Boron-Doped Graphene Field-Effect Transistors: A Route toward Unipolar Characteristics // ACS Nano. — 2012. — Vol.
6. —Pp. 7942–7947.[156] Wen-Chun Yen, Henry Medina, Jian-Shiou Huang, Chih-Chung Lai, Yu-Chuan Shih, Shih-MingLin, Jian-Guang Li, Zhiming M. Wang, Yu-Lun Chueh. Direct Synthesis of Graphene withTunable Work Function on Insulators via In Situ Boron Doping by Nickel-Assisted Growth // J.Phys. Chem. C. — 2014. — Vol. 118. — Pp. 25089–25096.[157] Mattia Cattelan, Stefano Agnoli, Marco Favaro, Denis Garoli, Filippo Romanato, MorenoMeneghetti, Alexei Barinov, Pavel Dudin, Gaetano Granozzi.
Microscopic View on a ChemicalVapor Deposition Route to Boron-Doped Graphene Nanostructures // Chem. Mater. — 2013. —Vol. 25. — Pp. 1490–1495.[158] Wataru Norimatsu, Koichiro Hirata, Yuta Yamamoto, Shigeo Arai, Michiko Kusunoki. Epitaxialgrowth of boron-doped graphene by thermal decomposition of B 4 C // J. Phys.: Condens.Matter. — 2012.
— Vol. 24. — P. 314207.[159] Yoong Ahm Kim, Kazunori Fujisawa, Hiroyuki Muramatsu, Takuya Hayashi, Morinobu Endo,Toshihiko Fujimori, Katsumi Kaneko, Mauricio Terrones, Jan Behrends, Axel Eckmann, CinziaCasiraghi, Kostya S. Novoselov, Riichiro Saito, Mildred S. Dresselhaus. Raman Spectroscopy ofBoron-Doped Single-Layer Graphene // ACS Nano. — 2012.
— Vol. 6. — Pp. 6293–6300.[160] Yong-Bing Tang, Li-Chang Yin, Yang Yang, Xiang-Hui Bo, Yu-Lin Cao, Hong-En Wang, Wen-JunZhang, Igor Bello, Shuit-Tong Lee, Hui-Ming Cheng, Chun-Sing Lee. Tunable Band Gaps andp-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping UsingReactive Microwave Plasma // ACS Nano.
— 2012. — Vol. 6. — Pp. 1970–1978.[161] J. Gebhardt, R. J. Koch, W. Zhao, O. Höfert, K. Gotterbarm, S. Mammadov, C. Papp, A. Görling,H.-P. Steinrück, Th. Seyller. Growth and Electronic Structure of Boron-Doped Graphene // Phys.Rev. B. — 2013. — Vol. 87. — P. 155437.243[162] W. Zhao, J. Gebhardt, K. Gotterbarm, O.
Höfert, C. Gleichweit, C. Papp, A Görling, H.-P.Steinrück. Gold Intercalation of Boron-Doped Graphene on Ni(111): XPS and DFT Study // J.Phys. Condens. Matter. — 2013. — Vol. 25. — P. 445002.[163] Wu Zhou, Myron D. Kapetanakis, Micah P. Prange, Sokrates T. Pantelides, Stephen J. Pennycook,Juan-Carlos Idrobo. Direct Determination of the Chemical Bonding of Individual Impurities inGraphene // Phys.
Rev. Lett. — 2012. — Vol. 109. — P. 206803.[164] Ruitao Lv, Maria Cristina dos Santos, Claire Antonelli, Simin Feng, Kazunori Fujisawa, AyseBerkdemir, Rodolfo Cruz-Silva, Ana Laura Elías, Nestor Perea-Lopez, Florentino López-Urías,Humberto Terrones, Mauricio Terrones. Large-Area Si-Doped Graphene: Controllable Synthesisand Enhanced Molecular Sensing // Adv.
Mater. — 2014. — Vol. 26. — Pp. 7593–7599.[165] Hui Gao, Zheng Liu, Li Song, Wenhua Guo, Wei Gao, Lijie Ci, Amrita Rao, Weijin Quan, RobertVajtai, Pulickel M Ajayan. Synthesis of S-doped graphene by liquid precursor // Nanotechnol. —2012. — Vol. 23. — P. 275605.[166] Surajit Some, Jangah Kim, Keunsik Lee, Atul Kulkarni, Yeoheung Yoon, SaeMi Lee, Taesung Kim,Hyoyoung Lee. Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors //Adv. Mater. — 2012. — Vol.
24. — Pp. 5481–5486.[167] S. Hüfner. Photoelectron Spectroscopy, Principles and Applications. — Berlin–Heidelberg–NewYork, 3rd edition: Springer, 2003.[168] J. H. Scofield. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV // J.El. Spectr. Relat. Phenom. — 1976. — Vol.