Диссертация (1145323), страница 42
Текст из файла (страница 42)
8. — Pp. 129–137.[169] J. J. Yeh, I. Lindau. Atomic subshell photoionization cross sections and asymmetry parameters:1 ≤ ≤ 103 // Atom. Data Nucl. Data. — 1985. — Vol. 37. — Pp. 1–155.[170] M. B. Trzhaskovskaya, V. I. Nefedov, V. G. Yarzhemsky. Photoelectron angular distribution parameters for elements Z = 1 to Z = 54 in the photoelectron energy range 100—5000 eV // Atom.Data Nucl. Data. — 2001. — Vol. 77. — Pp. 97–159.[171] C.
J. Powell, A. Jablonski. Calculations of electron inelastic mean free paths (IMFPs). VII.Reliability of the TPP-2M IMFP predictive equation. // J. Phys. Chem. Ref. Data. — 1999. —Vol. 28. — Pp. 19–62.[172] G. D. Mahan. Collective excitations in x-ray spectra of metals // Phys. Rev. B. — 1975. —Vol. 11. — Pp. 4814–4824.244[173] S. Doniach, Šunjić. Many-electron singularity in X-ray photoemission and X-ray line spectrafrom metals // J.
Phys. C: Solid State Phys. — 1970. — Vol. 3. — Pp. 285–291.[174] Andrea Damascelli, Zahid Hussain, Zhi-Xun Shen. Angle-resolved photoemission studies of thecuprate superconductors // Rev. Mod. Phys. — 2003. — Vol. 75. — Pp. 473–541.[175] P.D. Johnson. Spin-polarized photoemission // Rep.
Prog. Phys. — 1997. — Vol. 60. —Pp. 1217–1304.[176] J. Hugo Dil. Spin and angle resolved photoemission on non-magnetic low-dimensional systems //J. Phys.: Condens. Matter. — 2009. — Vol. 21. — P. 403001.[177] J. Stöhr. NEXAFS Spectroscopy. — Berlin: Springer, 1992.[178] Л.
Д. Ландау, Е. М. Лифшиц. Теоретическая физика. Т. III. Квантовая механика. — М.:Наука, 1989.[179] J. G. Simmons. Generalized Formula for the Electric Tunnel Effect Between Similar ElectrodesSeparated by a Thin Insulating Film // J. Appl.
Phys. — 1963. — Vol. 34. — Pp. 1793–1803.[180] Tunneling Phenomena in Solids, Ed. by E. Burstein, S. Lundquist. — New-York: Plenum Press,1969.[181] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel. Surface studies by scanning tunneling microscopy //Phys. Rev. Lett. — 1982. — Vol. 49. — Pp. 57–60.[182] G. Binnig, H.
Rohrer. Scanning tunneling microscopy – from birth to adolescence // Rev. Mod.Phys. — 1987. — Vol. 59. — Pp. 615–625.[183] G. Binnig, H. Rohrer. In touch with atoms // Rev. Mod. Phys. — 1987. — Vol. 71. —Pp. S324–S330.[184] J. Tersoff, D. R. Hamman. Theory and application for the scanning tunneling microscope // Phys.Rev. Lett. — 1983. — Vol. 50. — Pp. 1998–2001.[185] J. Tersoff, D. R. Hamman.
Theory of the scanning tunneling microscope // Phys. Rev. B. —1985. — Vol. 31. — Pp. 805–813.[186] J. A. Kubby, J. J. Boland. Scanning tunneling microscopy of semiconductor surfaces // Surf. Sci.Reports. — 1996. — Vol. 26. — Pp. 61–204.245[187] A. Selloni, P. Carnevali, E. Tosatti, C. D. Chen. Voltage-dependent scanning-tunneling microscopy of a crystal surface: Graphite // Phys. Rev. B. — 1985. — Vol. 31.
— Pp. 2602–2605.[188] D. Tománek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz, J. Clarke.Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopyimages of gpaphite // Phys. Rev. B. — 1987. — Vol. 35. — Pp. 7790–7793.[189] D.
Tománek, S. G. Louie. First-principles calculation of highly asymmetric structure in scanningtunneling-microscopy images of gpaphite // Phys. Rev. B. — 1988. — Vol. 37. — Pp. 8327–8336.[190] M. S. Dresselhaus, G. Dresselhaus. Intercalation compounds of graphite // Adv. Phys. — 2002. —Vol. 51. — P. 1.[191] W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko, S. Podsiadlo. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range // Appl.Phys.
A. — 2002. — Vol. 75. — Pp. 431–435.[192] K. Watanabe, T. Taniguchi, H. Kanda. Direct-bandgap properties and evidence for ultravioletlasing of hexagonal boron nitride single crystal // Nat. Mater. — 2004. — Vol. 3. — P. 404.[193] A. Rubio, J. L. Corkill, M. L. Cohen. Theory of graphitic boron nitride nanotubes // Phys.
Rev.B. — 1994. — Vol. 49. — Pp. 5081–5084.[194] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink. Substrate-inducedband gap in graphene on hexagonal boron nitride: Ab initio density functional calculations //Phys. Rev. B. — 2007. — Vol. 76. — P. 073103.[195] J. Slawińska, I.
Zasada, Z. Klusek. Energy gap tuning in graphene on hexagonal boron nitridebilayer system // Phys. Rev. B. — 2010. — Vol. 81. — P. 155433.[196] Fengnian Xia, D. B. Farmer, Yu ming Lin, Ph. Avouris. Graphene Field-Effect Transistors withHigh On/Off Current Ratio and Large Transport Band Gap at Room Temperature // Nano Lett. —2010.
— Vol. 10. — Pp. 715–718.[197] A. Nagashima, Y. Gamou, M. Terai, M. Wakabayashi, C. Oshima. Electronic states of the heteroepitaxial double-layer system: Graphite/monolayer hexagonal boron nitride/Ni(111) // Phys.Rev. B. — 1996. — Vol. 54. — P. 13491.246[198] А. М. Шикин. Электронная и атомная структура соединений на основе углеродных матриц, интеркалированных редкоземельными и благородными металлами.
— Дис. ... докт.физ.-мат. наук: 01.04.07 — СПб. — 2001.[199] Д. Ю. Усачёв. Электронная структура и морфология графена, синтезированного на монокристаллических поверхностях никеля и кобальта. — Дис. ... канд. физ.-мат. наук: 01.04.07— СПб. — 2010.[200] A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima. Electronic structure of monolayerhexagonal boron nitride physisorbed on metal surfaces // Phys. Rev. Lett. — 1995. — Vol. 75. —P. 3918.[201] A.
B. Preobrajenski, M. A. Nesterov, May Ling Ng, A. S. Vinogradov, N. Mårtensson. Monolayerh-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh // Chem. Phys.Lett. — 2007. — Vol. 446. — Pp. 119–123.[202] A. B. Preobrajenski, S. A. Krasnikov, A. S. Vinogradov, May Ling Ng, T. Käämbre, A. A. Cafolla,N. Mårtensson. Adsorption-induced gap states of h-BN on metal surfaces // Phys. Rev. B. —2008.
— Vol. 77. — P. 085421.[203] R. Laskowski, P. Blaha. Ab initio study of h-BN nanomeshes on Ru(001), Rh(111), and Pt(111) //Phys. Rev. B. — 2010. — Vol. 81. — P. 075418.[204] A. Goriachko, Y. He, M. Knapp, H. Over. Self-Assembly of a Hexagonal Boron Nitride Nanomeshon Ru(0001) // Langmuir. — 2007. — Vol. 23. — P. 2928.[205] A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima.
Electronic dispersion relations ofmonolayer hexagonal boron nitride formed on the Ni(111) surface // Phys. Rev. B. — 1995. —Vol. 51. — P. 4606.[206] A. B. Preobrajenski, A. S. Vinogradov, N. Mårtensson. Ni 3d–BN hybridization at theh-BN/Ni(111) interface observed with core-level spectroscopies // Phys. Rev. B. — 2004. —Vol.
70. — P. 165404.[207] A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, K.-H. Rieder. Surface intercalationof gold underneath a graphite monolayer on Ni(111) studied by angle-resolved photoemissionand high-resolution electron-energy loss spectroscopy // Phys. Rev. B. — 2000. — Vol. 62. —Pp.
13202–13208.247[208] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko,O. Rader. Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni // Phys. Rev.Lett. — 2008. — Vol. 101. — P. 157601.[209] T.
Wideman, L. G. Sneddon. Convenient procedures for the laboratory preparation of borazine //Inorg. Chem. — 1995. — Vol. 34. — Pp. 1002–1003.[210] A. Grüneis, K. Kummer, D. V. Vyalikh. Dynamics of Graphene Growth on a Metal Surface: ATime-Dependent Photoemission Study // New J. Phys. — 2009. — Vol. 11. — P. 073050.[211] Yu.-C. Lin, Yu Chen, Yu Huang. The growth and applications of silicides for nanoscale devices //Nanoscale. — 2012. — Vol. 4. — Pp. 1412–1421.[212] A.L. Schmitt, J.M. Higgins, J.R.
Szczech, S. Jin. Synthesis and applications of metal silicidenanowires // J. Mater. Chem. — 2010. — Vol. 20. — Pp. 223–235.[213] C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral Jr. Towards implementation of a nickelsilicide process for CMOS technologies // Microelectron. Eng. — 2003. — Vol. 70. — Pp. 144–157.[214] J.A. Kittl, K. Opsomer, C.
Torregiani, C. Demeurisse, S. Mertens, D.P. Brunco, M.J.H. Van Dal,A. Lauwers. Silicides and germanides for nano-CMOS applications // Mater. Sci. Eng. B. —2008. — Vol. 154–155. — Pp. 144–154.[215] M. Bhaskaran, S. Sriram, L.W. Sim. Nickel silicide thin films as masking and structural layers forsilicon bulk micro-machining by potassium hydroxide wet etching // J. Micromech.
Microeng. —2008. — Vol. 18. — P. 095002.[216] S. Senthilarasu, R. Sathyamoorthy, S. Lalitha. Synthesis and characterization of -FeSi2 grownby thermal annealing of Fe/Si bilayers for photovoltaic applications // Sol. Energ. Mat. Sol. C. —2004. — Vol. 82. — Pp. 299–305.[217] J. Kim, W.A. Anderson. Metal silicide-mediated microcrystalline silicon thin-film growth forphotovoltaics // Sol. Energ. Mat.
Sol. C. — 2007. — Vol. 91. — Pp. 534–538.[218] F. Zhou, J. Szczech, M.T. Pettes, A.L. Moore, S. Jin, Li Shi. Determination of Transport Propertiesin Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations // Nano Lett. — 2007.