Диссертация (1145311), страница 35
Текст из файла (страница 35)
of the National Academieof the U.S.A. — 1969. — Vol. 64., № 3. — P. 818–823.114. Karow, M. Eigenvalue condition numbers and a formula of Burke, Lewis andOverton / M. Karow // Electron. J. Linear Algebra. — 2006. — № 15. —P. 143–153.115. Keel, L. H., Bhattacharyya, S. P. Robust Stability via Sign-DefiniteDecomposition / L.H. Keel // IEEE Trans. Automat. Control. — 2011. —Vol. 56, №1.
— P. 140–145.116. Kharitonov, V. L., Torres-Munoz, J. A., Ortiz-Moctezuma, M. B. Polytopic251families of quasipolynomials: vertex-type stability conditions, Circuits andSystems I: Fundamental Theory and Applications, IEEE Transactions on [seealso Circuits and Systems I: Regular Papers, IEEE Transactions on]. — 2003.— Vol.
50, № 11. — P 1413–1420.117. Korhonen, T., Tavi, P. Automatic time-step adaptation of the forward Eulermethod in simulation of models of ion channels and excitable cells and tissue /T. Korhonen // Simulation Modelling Practice and Theory. — 2008. — № 16.— P. 639–644.118. Kressner, D., Peláez, M.
J., and Moro, J. Structured Hölder condition numbersfor multiple eigenvalues / D. Knesser // SIAM J. Matrix Anal. Appl. — 2009.— Vol. 31, № 1. — P. 175–201.119. Kronecker, L. Zur Theorie der Elimination einer Variabeln aus zweiAlgebraischen Gleichungen (1881) / L. Kronecker // Leopold Kronecker’sWerke. — Leipzig: Teubner, 1897. — Bd. 2. — P.
113–192.120. Ladyman, J., Lambert, J., Wiesner, K. What is a Complex System? J.Ladyman // European Journal for Philosophy of Science. — 2013. — №. 3.— P. 33–67.121. Latinne, O., Kylstra, N. J., Dorr, M., Purvis, J., Terao-Dunseath, M., Jochain,C. J., Burke, P. G. and Noble, C. J. Laser-induced degeneracies involvingautoionizing states in complex atoms / O. Latinne // Phys. Rev. Lett. —1995.
— №. 74. — P. 46–49.122. Laurent, H. L’Èlimination. In Scientia, Phys.-Mathèmatique, volume 7 /Y. Laurent — Paris: Gauthier-Villars, 1900. —123. Lehnigk, S. H. Stability Theory for Linear Motions ns with an Introduction toLiapunov’s Direct Method / S. H. Lehngik. — New York: Prentice-Hall, 1966.— 251 p.124. Lehot, Ph. G.
H. An Optimal Algorithm to Detect a Line Graph and OutputIts Root Graph / Ph. G. H. Lehot // J. ACM. — 1974. — Vol. 21, № 4. —P. 569–575.252125. Lempel, A. Matrix Factorization over GF (2) and Trace-Orthogonal Bases ofGF (2n ) / A. Lempel // SIAM J. Comput. — 1975. — Vol. 4, № 2.
— P. 175–186.126. Littlewood, D. E. The theory of group characters and matrix representations ofgroups / D. E. Littlewood. — Oxford: Oxford University Press, 1950. — 310 p.127. Liu, D., Trajanovski, S., Van Mieghem, P. ILIGRA: An Efficient InverseLine Graph Algorithm / D. Liu // Journal of Mathematical Modelling andAlgorithms in Operations Research. — 2015. — Vol. 14, № 1. — P. 13–33.128. MacDuffee, C.
C. The Theory of Matrices / C .C. MacDaffee. — New York:Chelsea Publishing Company, 1956. — 110 p.129. Maidens, J. Global Lyapunov functions and a hierarchical control scheme fornetworks of robotic agents / J. Maidens // American Control Conference(ACC). — 2013. — P.
4050–4055.130. MacWilliams, J. Orthogonal matrices over finite fields / J. MacWilliams //Amer. Math. Monthly. — 1969. — № 76. — P. 152–164.131. Mailybaev A. A. Computation of multiple eigenvalues and generalizedeigenvectors for matrices dependent on parameters. Numer / A. A. Mailybaev// Linear Algebra Appl. — 2006. — № 13. — P. 419–436.132. Macaulay, F. S. On some formulae in elimination / F.
S. Macaulay // Proc.London Math. Soc. — 1903. — Vol. 35. — P. 3–27.133. Marenich, E. E. Factorization properties of (n × n) Boolean matrices / E. E.Marenich // J. Math. Sci. (N. Y.). — 2009. — Vol. 163, № 6. — P. 732–738.134. Markoff, A. On the determination of the number of roots of an algebraicequation, situated in a given domain / A. Markoff // Математический сборник.
— 1940. — Т. 7 (49), № 1. — С. 3–6.135. TheMathLibraries[Электронныйресурс].—Режимhttp://docs.oracle.com/cd/E19957-01/806-3568/ncg_lib.html,доступа:свободныйю— Загл. с экрана.136. Mohar, B., Eigenvalues, Diameter, and Mean Distance in Graphs / B. Mohar// Graphs Combin. — 1991. — № 7. — P. 53–64.253137. Monshizadeh, N., Zhang, Sh., Kanat Camlibel, M.Disturbance decouplingproblem for multi-agent systems: A graph topological approach /N. Monshizadeh // Systems & Control Letters. — 2015. — Vol. 76. — P. 35–41.138.
Moro, J., Burke, J. V., Overton, M. L. On the Lidskii-Vishik-LyusternikPerturbation Theory for Eigenvalues of Matrices with Arbitrary JordanStructure / J. Moro // SIAM J. Matrix Anal. Appl. — 1997. — Vol. 18, № 4.— P. 793–817.139. Mucha, M., Sankowski, P. Maximum Matchings via Gaussian Elimination /M.
Mucha // Proc. 45th IEEE Symp. Foundations of Computer Science. —2004. — P. 248–255.140. Muhič, A., Plestenjak, B. A method for computing all values λ such that A+λBhas a multiple eigenvalue / A. Muhiča // Linear Algebra Appl. — 2014. —№ 440. — P. 345–359.141. Netto, E. Vorlesungen über Algebra, Bd. 2. / E. Netto. — Leipzig: Teubner,1900. — 531 s.142. Norman, R. Z., Rabin M. O. An Algorithm for a Minimum Cover of a Graph /R. Z. Norman // Proc.
Amer. Math. Soc. — 1959. — Vol. 10, № 2. P. 315–319.143. Olshevsky, A., Olshevsky, V. Kharitonov’s theorem and Hermite’s criterion /A.Olshevsky // Linear Algebra and Its Applications. — 2005. — Vol. 399, № 1.— P. 285–297.144. Ostrowski, A. M. Solution of Equations and Systems of Equations / A. M.Ostrowski. — New York: Academic Press, 1960. — 202 p.145. Seroussi, G., Lempel, A. Factorization of symmetric matrices and traceorthogonal bases in finite fields / G.
Seroussi // SIAM J. Comput. — 1980.— № 9. — P. 758–767.146. Oh, K.-K., Moore, K. L., Ahn, H.-S. Disturbance attenuation in a consensusnetwork of identical linear systems: An H ∞ approach / K.-K. Oh // IEEETransactions on Automatic Control. — 2014. — Vol. 59 (8), № 6701156. —P. 2164–2169.254147. Pan, V. Algebraic complexity of computing polynomial zeros / V. Pan //Comput. Math. Appl. — 1987.
— Vol. 14, № 4. — P. 285–304.148. Pemmaraju, S., Skiena, S. Implementing Discrete Mathematics: Combinatoricsand Graph Theory with Mathematica / S. Skiena. — Cambridge: CambridgeUniversity Press, 2003. — 480 p.149. Pothen, A., Fan, C. Computing the block triangular form of a sparse matrix /A. Pothen // ACM Trans. Math. Softw.
— 1990. — Vol. 16, № 4. — P. 303–324.150. Poyraz, M., Demir, Y., Gulten, A., Koksal, M. Analysis of switched systemsusing the bond graph methods / M. Poyraz // Journal of the Franklin Institute.— 1999. — Vol. 336, № 3. — P. 379–386.151. Provotorov, V.V. Boundary control of a parabolic system with distributedparameters on a graph in the class of summable functions / V.
V. Provotorov// Automation and Remote Control. — 2015. — Vol. 76, № 2. — P. 318–322.152. Pták V. Explicit Expressions for Bezoutiants / V. Pták // Linear Algebra andits Applications. — 1984. — Vol. 59. — P. 43–54.153. Ramnath, S., Sunder, S. On two-processor scheduling and maximum matchingin permutation graphs. — 1996. — Vol. 50, № 6. — P.
321–327.154. Roth, W. E. On direct product matrices / W. E. Roth // Bull. Amer. Math.Soc. — 1934. — № 40. — P. 461–468.155. Roussopoulos, N. D. A max m,n algorithm for determining the graph H fromits line graph G / N. D. Roussopoulos // Inform. Process. Lett. — 1973. —Vol. 2, № 4. — P. 108–112.156. Routh, E. J. A Treatise on the Stability of a Given State of Motion: ParticularlySteady Motion / E.J. Routh. — London: Macmillan and co., 1877. — 108 p.157. Introduction to the Modeling and Analysis of Complex Systems / H. Sayama.— New York: Open SUNY Textbooks, 2015. — 498 p.158. Schläfli, L. Über die Resultante eines Systemes mehrerer algebraischerGleichungen.
/ L. Schläfli // In Gesammelte Mathematische Abhandlungen.— Basel: Birkhäuser, 1953. — Vol. 2. — P. 9–112.255159. Schur, I. Uber potenzreihen, die im Innern des Einheitskreises beschrankt sind/ I. Schur // J. fur Mathematik. — 1917 and 1918. — 147 and 148. — P. 205-–232and 122-–145; English Transl. in: J. Schur Methods in Operator Theory andSignal Processing (Operator Theory: Advances and Applications, OT 18, Basel:Birkhauser-Verlag. — 1986. — P.
31-–88).160. Seelinger, G., Sissokho, P., Spence, L., Vanden Eynden, C. Partitions of finitevector spaces over GF (2) into subspaces of dimensions 2 and s / G. Seelinger //Finite Fields and Their Applications. — 2012. — Vol.18, № 6. — P. 1114–1132.161. Serret, J.-A. Cours d’Algèbre Supérieur, volume 1 / J.-A. Serret. — Paris:Gauthier-Villars, 1866.
— 643 p.162. Siegel, D., MacLean, D. Global stability of complex balanced mechanisms /D. Siegel // Journal of Mathematical Chemistry. — 2000. — Vol. 27, №. 1. —P. 89–110.163. Sneyd, J., Dufour, J-F. A dynamic model of the type-2 inositol triphosphatereceptor / J. Sneyd // Proc. Natl. Acad. Sci. USA. — 2002. — № 99. — P.2398–2403.164. Strassen, V.