Диссертация (1145311), страница 34
Текст из файла (страница 34)
25, № 1. — P. 80–104.61. Björk, Å., Dahlquist, G. Numerical mathematics and scientific computations /Å. Björk. — Philadelphia: SIAM, 2008. — Vol. 1, 482 p.62. Borges, C. F., Discretization vs. Rounding Error in Euler’s Method / C. F.Borges // The College Mathematical Journal. — 2011.
— Vol. 42, № 5. —P. 396–399.63. Borutzky, W., Dauphin-Tanguy, G., Thoma, J. U. Advances in bond graphmodelling: theory, software, applications / W. Borutzky // Mathematics and246Computers in Simulation. — 1995. — Vol. 39, № 5–6. — P. 465–475.64. Butera, R. J., McCarthy, M.
L. Analysis of real-time numerical integrationmethods applied to dynamic clamp experiments / R. J. Butera // J. NeuralEng. — 2004. — № 1. — P. 187–194.65. Cecioni, F. Sulle equazioni fra matrici AX = XB, X m = A /F. Cecioni //Atti Accad. naz. Lincei, Rend. — 1909. — Vol. 5, № 18. — P. 556–571.66.
Chatelin, F. Eigenvalues of Matrices / F. Chatelin. — New York: John Wiley,1993. — 458 p.67. Chaitin-Chatelin, F., Harrabi, A. and Ilahi, A. About Hцlder conditionnumbers and the stratication diagram for defective eigenvalues / F. ChaitinChatelin // Math. Comput. Simulation. — 2000. — №. 54. — P. 397–402.68. Chapouthier, G. Mosaic structures — a working hypothesis for the complexityof living organisms [Electronic resource] / G. Chapouthier // E-Logos(Electronic Journal for Philosophy).
— 2009. — Vol. 17. — Режим доступа: http://nb.vse.cz/kfil/elogos/biocosmology/chapouthier09.pdf, свободный.— Загл. с экрана.69. Chen, W. K. On vector spaces associated with a graph / W. K. Chen // SIAMJ. Appl. Math. — 1971. — Vol. 20 № 3. — P. 526–529.70. Cheng, J. J., Hwang, C. Value sets of polynomial families with coefficientsdepending nonlinearly on perturbed parameters / J. J.
Cheng // IEEE Proc.,Control Theory Appl. — 1998. — Vol. 145, № 1. — P. 73–82.71. Cohn, A., Uber die Anzahl der Wurzeln einer algebraischen Gleichung in EinemKreise / A. Cohn // Math. Z. — 1922. — № 14. — P. 110–148.72. Coppersmith, D. Solving linear equations over GF (2): block Lanczos algorithm/ D. Coppersmith // Linear Algebra and its Applications. — 1993. — Vol. 192.— P. 33–60.73. Coppersmith, D. Matrix multiplication via arithmetic progressions / D.Coppersmith, Sh. Winograd // J. Symbolic Computation 9(3), 251–280 (1990)74. Cormen, Th. H., Leiserson, Ch.
E., Rivest, R. L., Stein, C. Introduction to247Algorithms / Th. H. Cormen. — Cambridge, Massachusetts: MIT Press, 1990.— 1292 p.75. Couceiro, M., Foldes, S. Definability of Boolean function classes by linearequations over GF (2) / M. Couceiro // Discrete Applied Mathematics.
—2004. — Vol. 142, issues 1–3. — P. 29–34.76. Datta, B. N. On the Routh — Hurwitz — Fujiwara and the Shur — Cohn —Fujiwara Theorems fot the Root-Separation Problem / B. N. Datta // LinearAlgebra and its Applications. — 1978. — Vol. 22. — P. 235–245.77. Datta, A., Ho, M.-T., Bhattacharyya, S. P. Structure and Synthesis of PIDControllers / A. Datta. — London: Springer Verlag, 2003. — 233 p.78. Degiorgi, D. G., Simon K. A dynamic algorithm for line graph recognition /D. G. Degiorgi // Lecture Notes in Comput.
Sci. — 1995. — Vol. 1017. — P.37–48.79. Delgado, M., Sira-Ramírez, H. A bond graph approach to the modeling andsimulation of switch regulated DC-to-DC power supplies / M. Delgado //Simulation Practice and Theory. — 1998. — Vol. 6, №7. — P. 631–646.80. Deo, N. Graph Theory with Applications to Engineering and Computer Science/ N. Deo.
— New Jork: Prentice-Hall, 1974. — 478 p.81. Diestel R. Graph Theory Fourth Edition / R. Diestel. — Heidelberg: SpringerVerlag, 2010. — 451 p.82. Dobson, I., Zhang, J., Greene, S., Engdahl, H. and Sauer, P. W. Is strongmodal resonance a precursor to power system oscillations? / I. Dobson //IEEE Transactions On Circuits And Systems I: Fundamental Theory AndApplications. — 2001.
— №. 48. — P. 340–349.83. Duff, I. S., Reid, J. K., Algorithm 529: Permutations to Block Triangular Form[F1] / I. S. Duff // ACM Trans. Math. Softw. — 1978. — Vol. 4, № 2. —P. 189–192.84. Edmonds, J. Paths, trees, and flowers / J. Edmonds // Canad. J. Math. —1965. — № 17. — P. 449–467.24885. Realtime Simulation of Detailed Vehicle and Powertrain Dynamics, SAE 2004World Congress & Exhibition / H. Elmqvist [et al.] // SAE Paper 2004-01-0768.— 2004.86. Fall, C. P., Rinzel, J. An intracellular Ca2+ subsystem as a biologically plausiblesource of intrinsic conditional bistability in a network model of working memory/ C. P.
Fall // J. Comput. Neurosci. — 2006. — № 20. — P. 97–107.87. Friedland, Sh. Quadratic Forms and the Graph lsomorphism Problem. / Sh.Friedland // Linear Algebra Appl. — 1991. — № 150. — P. 423–442.88. Frobenius, F. G. Über die mit einer Matrix vertauschbaren Matrizen / F.
G.Frobenius // Berlin Sitzb. — 1910. — P. 3–15.89. Garloff, J., Zettler, M. Robustness Analysis of Polynomials with PolynomialParameter Dependency Using Bernstein Expansion / J. Garloff // IEEE Trans.Automat. Control. — 1998. — № 43. — P. 425–431.90. Gelfand, I.
M., Kapranov, M. M., Zelevinsky, A. V. Discriminants, Resultantsand Multidimensional Determinants / I. M. Gelfand. — Boston: Birkhäuser,1994. — 532 p.91. Giorgi, P. On the complexity of polynomial matrix computations / P. Giorgi[et al.] // ISSAC’03. — New York: ACM Press, 2003. — pp. 135–142.92. Golub, G.
H., Van Loan, Ch.F. Matrix Computations / Golub, G. H., VanLoan, Ch.F. — Baltimore and London: The Johns Hopkins University Press,1996. — 694 p.93. Golub, G. H., Ortega, J. M. Scientific Computing and Differential Equations/ G.H. Golub. — San Diego, California: Academic Press, 1992. — 337 p.94.
Gutman, S. Root Clustering in Parameter Space / S. Gutman. — Berlin:Springer-Verlag, 1990. — 120 p.95. Halmos, P. R. Finite-dimensional vector spaces. Undergraduate Texts inMathematics / P. R. Halmos. — New York: Springer-Verlag, 1993. — 202 p.96. Harary, F. Graph Theory / F. Harary. — Addison-Wesley, Reading, MA, 1969.— 274 p.24997. Heiss W. D. Exceptional points – their universal occurrence and their physicalsignificance / W. D.
Heiss // Czech. J. Phys. — 2004. — №. 54. — P. 1091–1099.98. Hermite, C. Extrait d’une lettre de Mr. Ch. Hermite de Paris ‘a Mr. Borchardtde Berlin, sur le nombre des racines d’une ‘equation alg‘ebrique comprises entredes limits don‘ees / C. Hermite // J. Reine Angew. Math. — 1856. — № 52. —P. 39–51.99. Higham, N.
J. Accuracy and stability of numerical algorithms / N. J. Higham.— Philadelphia: SIAM, 1996. — 688 p.100. Hoory, S., Linial, N., Widgerson, A. Expander graphs and their applications/ S. Hoory // Bulletin (New series) of the American Mathematical Society. —2006. — Vol. 43, № 4. — P. 439–561.101. Hosoya H. Topological index.
A newly proposed quantity characterizing thetopological nature of structural isomers of saturated hydrocarbons / H. Hosoya// Bulletin of the Chemical Society of Japan. — 1971. — Vol. 44, № 9. —P. 2332–2339.102. Janusz, G. J. Parametrization of self-dual codes by orthogonal matrices / G.J. Janusz // Finite Fields Appl. — 2007. — № 13. — P. 450–491.103. Jarlebring, E., Kvaal, S., Michiels, W. Computing all pairs (λ; µ) such that λ isa double eigenvalue of A + µB / E. Jarlebring // SIAM J. Matrix Anal. Appl.— 2011.
— № 32. — P. 902–927.104. Horn, R. A., Johnson, Ch. R. Topics in matrix analysis / R. A. Horn. — NewYork: Cambridge University Press, 1991. — 607 p.105. Hurwitz, A. On the conditions under which an equation has only roots withnegative real parts / A. Hurwitz // Selected Papers on Mathematical Trendsin Control Theory / ed. by R. Bellman, R. Kalaba. — Dover, New York, 1964.— P.
72–82.106. Kahaner, D., Moler, C., Nash, S. Numerical Methods and Software / D.Kahaner. — Englewood Cliffs, New Jersey: Prentice-Hall, 1989. — 495 p.107. Kalinina, E. Stability and D-stability of the family of real polynomials /250E. Kalinina // Linear Algebra and Its Applications.
— 2013. — № 438. —P. 2635–2650108. Kalinina, E., The most precise computations using Euler’s method in standardfloating-point arithmetic applied to modelling of biological systems / E.Kalinina // Computer Methods and Programs in Biomedicine. — 2013. —Vol. 111, № 2. — P. 471–479.109. Kalinina, E. A., Uteshev, A. Yu. Determination of the Number of Roots of aPolynomial Lying in a Given Algebraic Domain / E. A. Kalinina // Linearalgebra and its applications. — 1993.
— № 185. — P. 61–81.110. Kalinina, E.A. On Multiple Eigenvalues of a Matrix Dependent on a Parameter/ E. A. Kalinina // Proc. of the 18th In-tern. Workshop, CASC 2016. LNCS9890, pp. 305–314.111. Kalinina, E., Pogozhev, S., Khitrov, G.Edge covers and independence: algebraicapproach // Proceedings of the International Conference on NumericalAnalysis and Applied Mathematics 2015 (ICNAAM-2015).
AIP Publishing,2016. AIP Conf. Proc. 1738.112. Kalinina, E., Pogozhev, S., Khitrov, G. Linear algebra methods in graph theory// "Stability and Control Processes"in Memory of V.I. Zubov (SCP), 2015International Conference. — P. 570–572.113. Kalman, R. E. Algebraic characterization of polynomials whoes zeroz lie incertain algebraic domain / R. E. Kalman // Proc.