Диссертация (1144724), страница 81
Текст из файла (страница 81)
1197-1206.560. Sieberer B.J., Timmers A.C., Emons A.M.C. Nod factors alter themicrotubule cytoskeleton in Medicago truncatula root hairs to allow root hairreorientation // Molecular Plant-Microbe Interactions. — 2005. — V. 18, № 11. —P. 1195-1204.561. Simon-Rosin U., Wood C., Udvardi M.K. Molecular and cellularcharacterisation of LjAMT2;1, an ammonium transporter from the model legumeLotus japonicus // Plant Molecular Biology. — 2003. — V.
51, № 1. — P. 99-108.562. Singh B.P., Sainju U.M. Soil physical and morphological properties and rootgrowth // HortScience. — 1998. — V. 33, № 6. — P. 966-971.563. Singh O.V., Labana S., Pandey G., Budhiraja R., Jain R.K.Phytoremediation: an overview of metallic ion decontamination from soil //Applied Microbiology and Biotechnology. — 2003.
— V. 61, № 5. — P. 405-412.564. Singh S., Katzer K., Lambert J., Cerri M., Parniske M. CYCLOPS, a DNAbinding transcriptional activator, orchestrates symbiotic root nodule development //Cell Host and Microbe. — 2014. — V. 15, № 2. — P. 139-152.565. Singh S., Parniske M. Activation of calcium- and calmodulin-dependentprotein kinase (CCaMK), the central regulator of plant root endosymbiosis //Current Opinion in Plant Biology. — 2012. — V. 15, № 4. — P.
444-453.566. Sinharoy S., Liu C., Breakspear A., Guan D., Shailes S., Nakashima J.,Zhang S., Wen J., Torres-Jerez I., Oldroyd G., Murray J.D., Udvardi M.K. AMedicago truncatula Cystathionine-β-synthase-like domain-containing protein isrequired for rhizobial infection and symbiotic nitrogen fixation // Plant Physiology.— 2016. — V. 170, № 4. — P. 2204-2217.567. Sinharoy S., Torres-Jerez I., Bandyopadhyay K., Kereszt A., Pislariu C.I.,Nakashima J., Benedito V.A., Kondorosi E., Udvardi M.K.
The C2H2 transcriptionfactor REGULATOR OF SYMBIOSOME DIFFERENTIATION repressestranscription of the secretory pathway gene VAMP721a and promotes symbiosomedevelopment in Medicago truncatula // The Plant Cell. — 2013. — V. 25, № 9. —P. 3584-3601.568. Smit P., Raedts J., Portyanko V., Debellé F., Gough C., Bisseling T., GeurtsR. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-inducedtranscription // Science. — 2005. — V. 308, № 5729.
— P. 1789-1791.569. Smith P.M.C., Atkins C.A. Purine biosynthesis. Big in cell division, evenbigger in nitrogen assimilation // Plant Physiology. — 2002. — V. 128, № 3. — P.793-802.Список литературы495570. Soto M.J., Fernández-Aparicio M., Castellanos-Morales V., García-GarridoJ.M., Ocampo J.A., Delgado M.J., Vierheilig H. First indications for theinvolvement of strigolactones on nodule formation in alfalfa (Medicago sativa) //Soil Biology and Biochemistry. — 2010. — V. 42, № 2. — P. 383-385.571.
Soupène E., Foussard M., Boistard P., Truchet G., Batut J. Oxygen as a keydevelopmental regulator of Rhizobium meliloti N2-fixation gene expression withinthe alfalfa root nodule // Proceedings of the National Academy of Sciences of theUnited States of America.
— 1995. — V. 92, № 9. — P. 3759-3763.572. Sousa C., Johansson C., Charon C., Manyani H., Sautter C., Kondorosi A.,Crespi M. Translational and structural requirements of the early nodulin geneenod40, a short-open reading frame-containing RNA, for elicitation of a cellspecific growth response in the alfalfa root cortex // Molecular and CellularBiology. — 2001. — V.
21, № 1. — P. 354-366.573. Soyano T., Kawaguchi M. Systemic regulation of root nodule formation //Advances in Biology and Ecology of Nitrogen Fixation / Ohyama T. — Rijeka:InTech, 2014. — P. 89-109.574. Soyano T., Kouchi H., Hirota A., Hayashi M. NODULE INCEPTIONdirectly targets NF-Y subunit genes to regulate essential processes of root noduledevelopment in Lotus japonicus // PLOS Genetics. — 2013. — V. 9, № 3. — P.e1003352.575. Sparkes I.A., Ketelaar T., De Ruijter N.C., Hawes C. Grab a Golgi: lasertrapping of Golgi bodies reveals in vivo interactions with the endoplasmicreticulum // Traffic. — 2009. — V.
10, № 5. — P. 567-571.576. Sriprang R., Hayashi M., Ono H., Takagi M., Hirata K., Murooka Y.Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a genefrom Arabidopsis thaliana coding for phytochelatin synthase // Applied andEnvironmental Microbiology. — 2003. — V. 69, № 3. — P. 1791-1796.577. Sriprang R., Hayashi M., Yamashita M., Ono H., Saeki K., Murooka Y. Anovel bioremediation system for heavy metals using the symbiosis betweenleguminous plant and genetically engineered rhizobia // Journal of Biotechnology.— 2002.
— V. 99, № 3. — P. 279-293.578. Sriprang R., Murooka Y. Accumulation and detoxification of metals bypants and microbes // Environmental Bioremediation Technologies / Singh S. N.,Tripathi R. D. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
— P. 77100.579. Srivastava S., Emery R.J.N., Kurepin L.V., Reid D.M., Fristensky B., KavN.N.V. Pea PR 10.1 is a ribonuclease and its transgenic expression elevatescytokinin levels // Plant Growth Regulation. — 2006. — V. 49, № 1. — P. 17-25.580. Stacey G., Libault M., Brechenmacher L., Wan J., May G.D.
Genetics andfunctional genomics of legume nodulation // Current Opinion in Plant Biology. —2006a. — V. 9, № 2. — P. 110-121.581. Stacey G., McAlvin C.B., Kim S.-Y., Olivares J., Soto M.J. Effects ofendogenous salicylic acid on nodulation in the model legumes Lotus japonicus andMedicago truncatula // Plant Physiology. — 2006b. — V.
141, № 4. — P. 14731481.Список литературы496582. Stam P. Construction of integrated genetic linkage maps by means of a newcomputer package: Join Map // The Plant Journal. — 1993. — V. 3, № 5. — P.739-744.583. Steen D.A., Chadwick A.V. Ethylene effects in pea stem tissue // PlantPhysiology. — 1981. — V. 67, № 3. — P. 460-466.584. Stefano G., Hawes C., Brandizzi F.
ER–the key to the highway // CurrentOpinion in Plant Biology. — 2014. — V. 22. — P. 30-38.585. Stinemetz C., Takahashi H., Suge H. Characterization of hydrotropism: thetiming of perception and signal movement from the root cap in the agravitropic peamutant ageotropum // Plant and Cell Physiology. — 1996.
— V. 37, № 6. — P.800-805.586. Stougaard J. Genetics and genomics of root symbiosis // Current Opinion inPlant Biology. — 2001. — V. 4, № 4. — P. 328-335.587. Stracke S., Kistner C., Yoshida S., Mulder L., Sato S., Kaneko T., Tabata S.,Sandal N., Stougaard J., Szczyglowski K. A plant receptor-like kinase required forboth bacterial and fungal symbiosis // Nature. — 2002. — V. 417, № 6892. — P.959-962.588. Street I.H., Aman S., Zubo Y., Ramzan A., Wang X., Shakeel S.N., KieberJ.J., Schaller G.E. Ethylene inhibits cell proliferation of the Arabidopsis rootmeristem // Plant Physiology. — 2015.
— V. 169, № 1. — P. 338-350.589. Streeter J.G. Recent developments in carbon transport and metabolism insymbiotic systems // Symbiosis. — 1995. — V. 19. — P. 175-196.590. Streit W.R., Philips D.A. A biotin-regulated locus, bioS, in a possiblesurvival operon of Rhizobium meliloti // Molecular Plant-Microbe Interactions. —1997. — V. 10, № 7.
— P. 933-937.591. Stumpe M., Göbel C., Demchenko K., Hoffmann M., Klösgen R.B.,Pawlowski K., Feussner I. Identification of an allene oxide synthase (CYP74C)that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenicacid in below-ground organs of potato // The Plant Journal. — 2006. — V.
47, №6. — P. 883-896.592. Subramanian S., Stacey G., Yu O. Endogenous isoflavones are essential forthe establishment of symbiosis between soybean and Bradyrhizobium japonicum //The Plant Journal. — 2006. — V. 48, № 2. — P. 261-273.593. Subramanian S., Stacey G., Yu O. Distinct, crucial roles of flavonoidsduring legume nodulation // Trends in Plant Science. — 2007. — V. 12, № 7. — P.282-285.594. Suganuma N., Yamauchi H., Yamamoto K.
Enhanced production ofethylene by soybean roots after inoculation with Bradyrhizobium japonicum //Plant Science. — 1995. — V. 111, № 2. — P. 163-168.595. Sun J., Cardoza V., Mitchell D.M., Bright L., Oldroyd G., Harris J.M.Crosstalk between jasmonic acid, ethylene and Nod factor signaling allowsintegration of diverse inputs for regulation of nodulation // The Plant Journal. —2006. — V. 46, № 6. — P. 961-970.596. Suoniemi A., Anamthawat-Jónsson K., Arna T., Schulman A.H.Retrotransposon BARE-1 is a major, dispersed component of the barley (HordeumСписок литературы497vulgare L.) genome // Plant Molecular Biology. — 1996.
— V. 30, № 6. — P.1321-1329.597. Suzaki T., Ito M., Kawaguchi M. Genetic basis of cytokinin and auxinfunctions during root nodule development // Frontiers in Plant Science. — 2013.— V. 4, № 42.598. Suzaki T., Ito M., Yoro E., Sato S., Hirakawa H., Takeda N., Kawaguchi M.Endoreduplication-mediated initiation of symbiotic organ development in Lotusjaponicus // Development. — 2014. — V. 141, № 12. — P. 2441-2445.599.
Suzaki T., Yano K., Ito M., Umehara Y., Suganuma N., Kawaguchi M.Positive and negative regulation of cortical cell division during root noduledevelopment in Lotus japonicus is accompanied by auxin response //Development. — 2012. — V. 139, № 21. — P. 3997-4006.600. Suzuki A., Akune M., Kogiso M., Imagama Y., Osuki K.-i., Uchiumi T.,Higashi S., Han S.-Y., Yoshida S., Asami T., Abe M. Control of nodule number bythe phytohormone abscisic acid in the roots of two leguminous species // Plant andCell Physiology. — 2004. — V. 45, № 7. — P.
914-922.601. Suzuki A., Suriyagoda L., Shigeyama T., Tominaga A., Sasaki M.,Hiratsuka Y., Yoshinaga A., Arima S., Agarie S., Sakai T., Inada S., Jikumaru Y.,Kamiya Y., Uchiumi T., Abe M., Hashiguchi M., Akashi R., Sato S., Kaneko T.,Tabata S., Hirsch A.M.
Lotus japonicus nodulation is photomorphogeneticallycontrolled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA)signaling // Proceedings of the National Academy of Sciences of the United Statesof America. — 2011. — V. 108, № 40. — P. 16837-16842.602. Syōno K., Newcomb W., Torrey J.G. Cytokinin production in relation to thedevelopment of pea root nodules // Canadian Journal of Botany.