Диссертация (1144724), страница 73
Текст из файла (страница 73)
— 2012. — V. 160, № 2. — P.917-928.253. Huang C.-Y., Bazzaz F.A., Vanderhoef L.N. The inhibition of soybeanmetabolism by cadmium and lead // Plant Physiology. — 1974. — V. 54, № 1. —P. 122-124.254. Huang Y.-F., Jordan W.R., Wing R.A., Morgan P.W. Gene expressioninduced by physical impedance in maize roots // Plant Molecular Biology. —1998. — V. 37, № 6. — P. 921-930.255. Hungria M., Joseph C.M., Phillips D.A. Rhizobium nod gene inducersexuded naturally from roots of common bean (Phaseolus vulgaris L.) // PlantPhysiology. — 1991. — V. 97, № 2. — P.
759-764.256. Hunter W.J. Ethylene production by root nodules and effect of ethylene onnodulation in Glycine max // Applied and Environmental Microbiology. — 1993.— V. 59, № 6. — P. 1947-1950.257. Hunter W.J. Influence of root-applied epibrassinolide and carbenoxolone onthe nodulation and growth of soybean (Glycine max L.) seedlings // Journal ofAgronomy and Crop Science. — 2001. — V.
186, № 4. — P. 217-221.258. Huo X., Schnabel E., Hughes K., Frugoli J. RNAi phenotypes and thelocalization of a protein::GUS fusion imply a role for Medicago truncatula PINgenes in nodulation // Journal of Plant Growth Regulation. — 2006. — V. 25, № 2.— P. 156-165.259. Ike A., Sriprang R., Ono H., Murooka Y., Yamashita M. Bioremediation ofcadmium contaminated soil using symbiosis between leguminous plant andrecombinant rhizobia with the MTL4 and the PCS genes // Chemosphere.
— 2007.— V. 66, № 9. — P. 1670-1676.260. Ike A., Sriprang R., Ono H., Murooka Y., Yamashita M. Promotion of metalaccumulation in nodule of Astragalus sinicus by the expression of the ironregulated transporter gene in Mesorhizobium huakuii subsp. rengei B3 // Journal ofBioscience and Bioengineering. — 2008. — V. 105, № 6. — P. 642-648.261. Imaizumi-Anraku H., Kawaguchi M., Koiwa H., Akao S., Syōno K. Twoineffective-nodulating mutants of Lotus japonicus—different phenotypes causedby the blockage of endocytotic bacterial release and nodule maturation // Plant andCell Physiology. — 1997. — V.
38, № 7. — P. 871-881.262. Imaizumi-Anraku H., Takeda N., Charpentier M., Perry J., Miwa H.,Umehara Y., Kouchi H., Murakami Y., Mulder L., Vickers K. Plastid proteinscrucial for symbiotic fungal and bacterial entry into plant roots // Nature. — 2005.— V. 433, № 7025. — P. 527-531.263. Imin N., Mohd-Radzman N.A., Ogilvie H.A., Djordjevic M.A. The peptideencoding CEP1 gene modulates lateral root and nodule numbers in Medicagotruncatula // Journal of Experimental Botany. — 2013. — V. 64, № 17. — P.5395-5409.264. Inoue H., Nojima H., Okayama H. High efficiency transformation ofEscherichia coli with plasmids // Gene.
— 1990. — V. 96, № 1. — P. 23-28.Список литературы470265. Isberg R.R., O'connor T.J., Heidtman M. The Legionella pneumophilareplication vacuole: making a cosy niche inside host cells // Nature ReviewsMicrobiology. — 2009. — V.
7, № 1. — P. 13-24.266. Ishaq M., Ibrahim M., Hassan A., Saeed M., Lal R. Subsoil compactioneffects on crops in Punjab, Pakistan // Soil and Tillage Research. — 2001. — V.60, № 3. — P. 153-161.267. Iturriaga E.A., Leech M.J., Paul Barratt D.H., Wang T.L. Two ABAresponsive proteins from pea (Pisum sativum L.) are closely related to intracellularpathogenesis-related proteins // Plant Molecular Biology. — 1994. — V.
24, № 1.— P. 235-240.268. Ivanov S., Fedorova E., Bisseling T. Intracellular plant microbe associations:secretory pathways and the formation of perimicrobial compartments // CurrentOpinion in Plant Biology. — 2010. — V. 13, № 4. — P. 372-377.269. Ivanova K.A., Tsyganova A.V., Brewin N.J., Tikhonovich I.A., TsyganovV.E. Induction of host defences by Rhizobium during ineffective nodulation of pea(Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD),sym33 (PsIPD3/PsCYCLOPS) and sym42 // Protoplasma. — 2015.
— V. 252, №6. — P. 1505-1517.270. Iwata H., Ninomiya S. AntMap: constructing genetic linkage maps using anant colony optimization algorithm // Breeding Science. — 2006. — V. 56, № 4. —P. 371-377.271. Jacobsen E. Modification of symbiotic interaction of pea (Pisum sativum L.)and Rhizobium leguminosarum by induced mutations // Plant and Soil. — 1984. —V. 82, № 3.
— P. 427-438.272. Jamet A., Mandon K., Puppo A., Hérouart D. H2O2 is required for optimalestablishment of the Medicago sativa/Sinorhizobium meliloti symbiosis // Journalof Bacteriology. — 2007. — V. 189, № 23. — P. 8741-8745.273. Jamet A., Sigaud S., Van de Sype G., Puppo A., Hérouart D. Expression ofthe bacterial catalase genes during Sinorhizobium meliloti-Medicago sativasymbiosis and their crucial role during the infection process // Molecular PlantMicrobe Interactions. — 2003. — V. 16, № 3. — P. 217-225.274. Jin Y., Liu H., Luo D., Yu N., Dong W., Wang C., Zhang X., Dai H., YangJ., Wang E. DELLA proteins are common components of symbiotic rhizobial andmycorrhizal signalling pathways // Nature Communications.
— 2016. — V. 7. —P. 12433.275. John M., Röhrig H., Schmidt J., Wieneke U., Schell J. Rhizobium NodBprotein involved in nodulation signal synthesis is a chitooligosaccharidedeacetylase // Proceedings of the National Academy of Sciences of the UnitedStates of America. — 1993. — V. 90, № 2. — P. 625-629.276. Johnson K.A., Sistrunk M.L., Polisensky D.H., Braam J. Arabidopsisthaliana responses to mechanical stimulation do not require ETR1 or EIN2 // PlantPhysiology.
— 1998. — V. 116, № 2. — P. 643-649.277. Jording D., Pühler A. The membrane topology of the Rhizobium meliloti C4dicarboxylate permease (DctA) as derived from protein fusions with EscherichiaСписок литературы471coli K12 alkaline phosphatase (PhoA) and β-galactosidase (LacZ) // Molecular andGeneral Genetics. — 1993.
— V. 241, № 1. — P. 106-114.278. Jording D., Uhde C., Schmidt R., Pühler A. The C4-dicarboxylate transportsystem of Rhizobium meliloti and its role in nitrogen fixation during symbiosiswith alfalfa (Medicago sativa) // Experientia. — 1994. — V. 50, № 10. — P. 874883.279. Journet E.-P., El-Gachtouli N., Vernoud V., de Billy F., Pichon M., DedieuA., Arnould C., Morandi D., Barker D.G., Gianinazzi-Pearson V.
Medicagotruncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed duringmycorrhization in arbuscule-containing cells // Molecular Plant-MicrobeInteractions. — 2001. — V. 14, № 6. — P. 737-748.280. Kaló P., Gleason C., Edwards A., Marsh J., Mitra R.M., Hirsch S., Jakab J.,Sims S., Long S.R., Rogers J., Kiss G.B., Downie J.A., Oldroyd G.E.D.Nodulation signaling in legumes requires NSP2, a member of the GRAS family oftranscriptional regulators // Science. — 2005. — V. 308, № 5729. — P. 17861789.281. Kaló P., Seres A., Taylor S.A., Jakab J., Kevei Z., Kereszt A., Endre G.,Ellis T.H.N., Kiss G.B. Comparative mapping between Medicago sativa and Pisumsativum // Molecular Genetics and Genomics. — 2004. — V. 272, № 3. — P. 235246.282.
Kaminski P.A., Batut J., Boistard P. A survey of symbiotic nitrogen fixationby rhizobia // The RhizobiaceaeSpringer, 1998. — P. 431-460.283. Kanamori N., Madsen L.H., Radutoiu S., Frantescu M., Quistgaard E.M.H.,Miwa H., Downie J.A., James E.K., Felle H.H., Haaning L.L., Jensen T.H., SatoS., Nakamura Y., Tabata S., Sandal N., Stougaard J. A nucleoporin is required forinduction of Ca2+ spiking in legume nodule development and essential for rhizobialand fungal symbiosis // Proceedings of the National Academy of Sciences of theUnited States of America.
— 2006. — V. 103, № 2. — P. 359-364.284. Kardailsky I.V., Brewin N.J. Expression of cysteine protease genes in peanodule development and senescence // Molecular Plant-Microbe Interactions. —1996. — V. 9, № 8. — P. 689-695.285. Karmarkar V.M. Transcriptional regulation of nodule development andsenescence in Medicago truncatula Wageningen University, 2014. — 110 p.286. Kawaguchi M., Imaizumi-Anraku H., Fukai S., Syono K. Unusual branchingin the seedlings of Lotus japonicus—gibberellins reveal the nitrogen-sensitive celldivisions within the pericycle on roots // Plant and Cell Physiology.