Диссертация (1138178), страница 17
Текст из файла (страница 17)
Рекомендации по новым нормативамБанка России в связи с внедрением принципов Базеля II// Банковскоедело.– 2010. – №9. –С.52–56.37.Росстат. Официальная статистика. Федеральная службагосударственной статистики (http://www.gks.ru/).38.Симановский А..Ю. Регулятивные требования к капиталу:возможны ли альтернативы?//Деньги и Кредит. – 2008.
– № 7. – С.11–24.39.Симановский А.Ю. Кризис и реформа регулирования:отдельные аспекты// Деньги и Кредит. – 2010. – №12. – С.7–15.12640.Стандартыэмиссииценныхбумагирегистрациипроспектов ценных бумаг (утверждены приказом ФСФР России от30.08.2013 г. № 29800) (http://www.consultant.ru).41.ТенВ.В.Проблемыанализакредитоспособностизаемщиков//Банковское дело.
– 2006. – №3. – С.33–37.42.Тотьмянина К.М. Моделирование вероятности дефолтакорпоративных заемщиков с учетом макроэкономической конъектуры// Электронный журнал Корпоративные финансы. – 2014. – №1 (29).– С.5–19.43.Тотьмянина К.М. Обзор моделей вероятности дефолта //Управление финансовыми рисками.
– 2011. – №01(25). – С.12–24.44.ТотьмянинапромышленныхК.М.Оценкакомпанийнавероятностиосноведефолтафинансовыхпоказателей//Финансовая аналитика: проблемы и решения. – 2011.–№11 (53). – С. 59–68.45.Федеральный закон «О несостоятельности (банкротстве)»(от 27.09.2002 № 127–ФЗ, действующая редакция от 12.03.2014).(http://www.consultant.ru).46.ЦБ РФ.
Статистика. Центральный Банк РоссийскойФедерации. (www.cbr.ru).47.ШереметА.Д. Методикафинансовогоанализа –М.: Инфра–М, 2003. – 485 С.48.Altman E.I. Financial Rations. Discriminant Analysis, and thePrediction of Corporate Bankruptcy.//Journal of Finance. – 1968. – Vol.23.– P.189–209.49.Altman E.I. Managing Credit Risk: A Challenge for the NewMillennium. //Economic Notes. – 2003.– Vol.31.– P.201–214.12750.Altman E.I., Haldeman R.G., Narayanan P. Zeta Analysis: ANew Model to Identify Bankruptcy Risk of Corporation.//Journal ofBanking and Finance. – 1977.
– Vol.1.– P.29–54.51.Altman E.I., Marco G., Varetto F. Corporate DistressDiagnosis: Comparisons using Linear Discriminant Analysis and NeuralNetworks (the Italian Experience).// Journal of Banking and Finance. –1994. – Vol.18(3).– P.60–80.52.Alves I. Sectorial fragility: factors and dynamics.// BISWorking Paper.
– 2005. –Vol.2. – P.80–450.53.Basel Committee on Banking Supervision «A New BaselCapital Adequacy Framework» (1999) (www.bis.org).54.Basel Committee on Banking Supervision «An ExplanatoryNote on the Basel II IRB Risk Weight Function» (2005) (www.bis.org).55.Basel Committee on Banking Supervision «Credit riskmodeling:currentpracticesandapplications»(1999)(www.bis.org/publ/bcbs49.htm).56.Basel Committee on Banking Supervision «Implementation ofBasel II: practical considerations» (2004) (www.bis.org/publ/bcbs109.htm)57.Basel Committee on Banking Supervision «InternationalConvergence of Capital Measurement and Capital Standards» (2004)(www.bis.org).58.Basel Committee on Banking Supervision «InternationalConvergenceofCapitalMeasurementandCapitalStandards»(Comprehensive version 2006) (www.bis.org).59.Basel Committee on Banking Supervision «Internationalregulatory framework for banks» (2011) (www.bis.org)60.BaselCommitteeonBankingSupervisionEnhancements to the Basel II framework» (2009) (www.bis.org).128«Proposed61.BeaverW.H.FinancialRatiosAsPredictorsofFailure.//Journal of Accounting Research.–1966.
–Vol. 4. – P.71–111.62.Bigus J. P. Data mining with neural networks: solvingbusiness problems from application development to decision support. - NJ:McGraw–Hill Inc.,1996.63.BIS.Statistics.BankforInternationalSettlements(www.bis.org)64.Black F., Scholes M. The Pricing of Options and CorporateLiabilities.// The Journal of Political Economy. – 1973. – Vol.81(3). –P.637–654.65.Borio С., Furfine С., Lowe P. Procyclicality of the financialsystem and financial stability: issues and policy options.// BIS Papers.
–2001.– Vol.1. – P.11–57.66.Caprio G., College W. (2009). Financial Regulation in aChangingWorld:LessonsfromtheRecentCrisis.(https://www.tcd.ie/Economics/assets/pdf/Regulation_in_a_World_of_Change.pdf)67.Cbonds. База данных. Информационное агентство Cbonds(www.cbonds.ru)68.Chan–Lau J.A.. Fundamentals–Based Estimation of DefaultProbabilities: A Survey.// Working paper International Monetary Fund. –2006. – Vol.06(149). – P.2–18.69.Chesser D. Predicting Loan Noncompliance.// The Journal ofCommercial Bank Lending. – 1974.
– Vol.8 – P.28–38.70.Credit Suisse (1997) «CreditRisk+ A Credit Risk ManagementFramework».(http://www.csfb.com/institutional/research/assets/creditrisk.pdf)12971.Danielsson J., Asgeir J. Countercyclical Capital and CurrencyDependence. // Financial Markets, Institutions & Instruments. – 2005. –Vol.14 (5). – P.329–348.72.Durand, D.Risk Elements in Consumer InstallmentFinancing// National Bureau of Economic Research. – 1941. – Vol.
0–870–14124–4.European banking authority «Report on the pro-cyclicality of73.capital requirements under the internal ratings based approach» (17December2013)(https://www.eba.europa.eu/documents/10180/15947/20131217+Report+on+the+procyclicality+of+capital+requirements+under+the+IRB+Approach.pdf)74.Fernandes E.J. (2005). Corporate credit risk modeling:quantitateratingsystemandprobabilityofdefaultestimation.(http://images.to.camcom.it/f/tofinanza/I_/I_01.pdf)75.GlobalFinancial Services Authority «A Regulatory Response to theBankingCrisis»(DiscussionPaperMarch2009)(http://fic.wharton.upenn.edu/fic/Policy%20page/dp09_02.pdf).76.Financial Stability Forum. Report of the Financial StabilityForum on Addressing Procyclicality in the Financial System. (April 2009).(https://www.financialstabilityboard.org/publications/r_0904a.pdf)77.FIRA PRO.
Информационно–аналитическая система FIRAPRO (www.pro.fira.ru).78.FSA. FSA Prudential Sourcebook for Banks, BuildingSocietiesandInvestmentFirms.FinancialServicesAuthority(http://fsahandbook.info/FSA/html/handbook/).79.Hoggarth G., Sorensen S., Zicchino L. Stress Tests of UKBanks Using a VAR Approach.//Bank of England Working Paper. – 2005.– Vol.282.13080.ISDA. International Swaps and Derivatives Association(http://www2.isda.org/)81.Jackson P., Perraudin W. Regulatory Implications of CreditRisk Modelling.// Journal of Banking & Finance.–2000.–Vol.
24(1–2). –P.1–14.82.Jarrow R. A., Turnbull S. Pricing Derivatives on FinancialSecurities Subject to Credit Risk.// Journal of Finance.–1995.– Vol. 50. –P.53–85.83.Köke J., Determinants of acquisition and failure: Stylized factsand lessons for empirical studies.// ZEW Discussion Paper. – 2001 –Vol.01(30).84.Lawrence J. C., Eichenbaum M., Trabandt M.
Unemploymentand Business Cycles.// FRB International Finance Discussion Paper. –2013. – Vol.1089 (September 24).85.Lanine G., Vander R. Failure prediction in the Russian banksector with logit and trait recognition models// Expert systems withapplications. – 2006. – Vol. 30(3). – P.463-478.86.Medcalc.Medcalcstatisticalsoftware(http://www.medcalc.org).87.Merton R.C. On the Pricing of Corporate Debt: The RiskStructure of Interest Rates.// Journal of Finance.–1974.– Vol. 29. (2).
–P.449–470.88.Moses D., Liao S.S. On developing models for failureprediction//Journal of Commercial Bank Lending. –1987. – Vol. 69. –P.27–38.89.Muliaman D. H., Wimboh S., Bagus S., Dwityapoetra B., ItaR. Rating migration matrices: empirical evidence in Indonesia//IFCBulletin. – 2009. – Vol.31. – P.260-276.13190.Nazari M. Measuring Credit Risk of Bank Customers UsingArtificial Neural Network// Journal of Management Research. –2013.
–Vol. 5(2). – P.17–27.91.Ohlson J.A. Financial Ratios and the Probabilistic Predictionof Bankruptcy//Journal of Accounting Research.– 2012. – Vol.18(1). –P.109–131.92.Pederzoli C., Torricelli C., Castellani S. The interaction offinancial fragility and the business cycle in determining banks loan losses:an investigation of the Italian case.//Economic Notes.– 2010. Vol. 39(3). –P.129–146.93.Industry,Pesaran M.H., Schuermann T., Treutler B–J.
The Role ofGeographyandFirmHeterogeneityinCreditRiskDiversification.//Cambridge Working Papers in Economics. – 2005. –Vol.0529.94.Repullo R., Saurina J., Trucharte C.Mitigating theProcyclicality of Basel II. // Economic Policy. – 2010. – Vol. 25 (64). –P.659-702.95.Rommer A.D. Accounting-based credit–scoring models:econometric investigations: Ph.D. Thesis. University of Copenhagen.
–Copenhagen, 2005.96.Saurina J., Trucharte C. An Assessment of Basel IIProcyclicality in Mortgage Portfolios.// Journal of Financial ServicesResearch. –2007. – Vol.32. – P. 81–101.97.Shumway T. Forecasting Bankruptcy More Accurately: ASimple Hazard Model.//Journal of Business. – 2001. –Vol.74(1).–P.101–124.98.Singleton K., Duffie D. Modeling term structures of defaultable bonds.// Review of Financial Studies. –1999.
– Vol.12 . – P.687–720.13299.Stata.DataAnalysisandStatisticalSoftware(http://www.stata.com).100.Tamari M. Financial Ratios as a Means of ForecastingBankruptcy.// Management International Review.–1966. –Vol. 6(4). –P.15–21.101.Tamayo P., Galindo J. Credit Risk Assessment UsingStatistical and Machine Learning: Basic Methodology and Risk ModelingApplications.// Computational Studies at Stanford.
– 2000. – Vol.15 (1–2).– P.107–143.102.Treacy W. F., Carey M. S. Credit Risk Rating Systems atLarge US Banks.// Journal of Banking & Finance.–2000.– Vol. 24.(1–2).–P.167–201.103.Valles. V. Stability of a «through–the–cycle» rating systemduring a financial crisis. // Financial Stability Institute. Bank forinternational settlements.
–2006. (http://www.bis.org/fsi/awp2006.pdf)104.Wilson T. Portfolio Credit Risk.//FRBNY Economic PolicyReview.–1998. –Vol.4(3). – P.71–82.105.Yang Z. R., Platt M. B. Probabilistic neural networks inbankruptcy prediction //Journal of Business Research.–1999. – Vol.10. –P.53–82.106.Yiping Q. Macroeconomic factors and probability ofdefault.//European Journal of Economics.
– 2008. – Vol. 13 – P.192–215.107.Zadeh L.A. Fuzzy sets. // Information and Control. – 1965. –Vol. 8. – P. 338–353.108.Zicchino L. Hoggarth G., Sorensen S. Stress tests of UK banksusing a VAR approach. // Bank of England. – 2005. – Vol. 282.133.
















