Диссертация (1137347), страница 21
Текст из файла (страница 21)
2nded. Hafner Press, New York, 2017.[BCLP10] M. Bramanti, G. Cupini, E. Lanconelli, and E. Priola. Global Lp estimates for degenerateOrnstein-Uhlenbeck operators. Mathematische Zeitschrift, 266(4):789–816, 2010.[BGM10] E. Benhamou, E. Gobet, and M. Miri. Expansion formulas for european options in a localvolatility model. International Journal of Theoretical and Applied Finance, 13:602 – 634,2010.[BKH09]V. Bally and A. Kohatsu-Higa.
Lower bounds for densities of Asian typestochastic differential equations. Journal of Functional Analysis, 2009.[BL08]T. Bodineau and L. Lefevere. Large deviations of lattice hamiltonian dynamics coupledto stochastic thermostats. Journal of Statistical Physics, 133:1–27, 2008.[BP09]R.F. Bass and E.A. Perkins. A new technique for proving uniqueness for martingaleproblems. From Probability to Geometry (I): Volume in Honor of the 60th Birthday ofJean-Michel Bismut, pages 47–53, 2009.[BPV01]E.
Barucci, S. Polidoro, and V. Vespri. Some results on partial differential equations andasian options. Math. Models Methods Appl. Sci, 3:475–497, 2001.[BR76]R. Bhattacharya and R. Rao. Normal approximations and asymptotic expansions. Wileyand sons, 1976.[BT96a]V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations:I. Convergence rate of the distribution function. Probability Theory and Related Fields,104-1:43–60, 1996.[BT96b]V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations,II. Convergence rate of the density. Monte Carlo Methods and Applications, 2:93–128,1996.[BY89]N.
Becker and P. Yip. Analysis of variations in an infection rate. Australian Journal ofStatistics, 31(1), 1989.93[CFP10]F. Corielli, P. Foschi, and A. Pascucci. Parametrix approximation of diffusion transitiondensities. SIAM Journal on Financial Mathematics, 1:833 – 867, 2010.[CL04]H. Crámer and M.R.
Leadbetter. Statistical Inference for Ergodic Diffusion Processes.Dover Publications, Inc., Mineola, NY, 2004.[DM10]F. Delarue and S. Menozzi. Density estimates for a random noise propagating through achain of differential equations. Journal of Functional Analysis, 259–6:1577–1630, 2010.[Dyn65]E. B Dynkin. Markov Processes. Springer Verlag, 1965.[EPRB99] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics ofanharmonic chains coupled to two heat baths at different temperatures.
Communicationsin Mathematical Physics., 201(3):657–697, 1999.[FH15]N. Frikha and L. Huang. A multi-step richardson–romberg extrapolation method forstochastic approximation. Stochastic Processes and their Applications, 125(11):4066 –4101, 2015.[FKHL16] N. Frikha, A. Kohatsu-Higa, and L. Li. On the first hitting times of one dimensionalelliptic diffusions.
https://arxiv.org/abs/1609.09327, 2016.[Fri64]A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964.[Fri18]N. Frikha. On the weak approximation of a skew diffusion by an Euler-type scheme.Bernoulli, 24(3):1653–1691, 2018.[Gav77]B. Gaveau. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math., 139(1-2):95–153, 1977.[GCJ93]V.
Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multidimensional diffusion processes. Annales de l’I.H.P. Probabilites et statistiques, 29:119–151, 1993.[GS67]I. Gihman and A. Skorohod. Stochastic Differential Equations. Naukova dumka, Kiev.,1967.[GS82]I.
Gihman and A. Skorohod. Stochastic Differential Equations and Applications. Naukovadumka, Kiev., 1982.[Had23]J Hadamard. Lectures on cauchy’s problem in linear partial differential equations, yaleuniv. Press. New Haven, 1923.[HM16]L. Huang and S. Menozzi. A Parametrix Approach for some Degenerate Stable DrivenSDEs. Annales Instit. H. Poincaré, 52(4):1925–1975, 2016.[HN04]F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the fokkerplanck equation with a high-degree potential. Archive for Rational Mechanics and Analysis, 171(2):151–218, 2004.[Hör63]L. Hörmander. Linear partial di]]erential operators. Springer-Verlag, Berlin-GSttingenHeidelberg, 1963.[Hör67]L.
Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171,1967.94[IKO62]A. M. Il’in, A. S. Kalashnikov, and O. A. Oleinik. Second-order linear equations ofparabolic type. Uspehi Mat. Nauk, 17–3(105):3–146, 1962.[JYC10]M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Markets.Springer Finance, London, 2010.[KKM17] V. Konakov, A. Kozhina, and S Menozzi. Stability of densities for perturbed Diffusionsand Markov Chains. ESAIM: Probability and Statistics, 21:88–112, 2017.[KM85]V. Konakov and S.
Molchanov. On the convergence of Markov chains to diffusion processes.Teoriya Veroyatnostei i ee Primeneniya, pages 51–64, 1984, English translation in TheoryProb. Math. Stat., 31, 59-73, (1985).[KM00]V. Konakov and E. Mammen. Local limit theorems for transition densities of Markovchains converging to diffusions. Probability Theory and Related Fields, 117:551–587, 2000.[KM02]V. Konakov and E. Mammen.
Edgeworth type expansions for Euler schemes for stochasticdifferential equations. Monte Carlo Methods and Applications, 8–3:271–285, 2002.[KM17]V. Konakov and S Menozzi. Weak Error for the Euler Scheme Approximation of Diffusionswith non-smooth coefficients. Electronic Journal of Probability, 22:1–47, 2017.[KMM10] V. Konakov, S.
Menozzi, and S. Molchanov. Explicit parametrix and local limit theoremsfor some degenerate diffusion processes. Annales de l’Institut Henri Poincaré, Série B,46–4:908–923, 2010.[Kol34]A. N. Kolmogorov. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung).
Annalsof Mathematics, 2-35:116–117, 1934.[Kol00]V. Kolokoltsov. Symmetric stable laws and stable-like jump diffusions. Proceedings of theLondon Mathematical Society, 80:725–768, 2000.[Koz16]A. Kozhina. Stability of densities for perturbed degenerate diffusions. Teoriya Veroyatnostei i ee Primeneniya, 3:570–579, 2016.[Kry96]N. V. Krylov. Lectures on elliptic and parabolic equations in Hölder spaces. GraduateStudies in Mathematics 12. AMS, 1996.[KS84]S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. I.
Stochastic analysis(Katata/Kyoto, 1982), North-Holland Math. Library, 32:271–306, 1984.[KS85]S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. Journal of theFaculty of Science, the University of Tokyo, 32:1–76, 1985.[Lev07]E. E. Levi. Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rendicontidel Circolo Matematico di Palermo, 24:275–317, 1907.[LM10]V. Lemaire and S. Menozzi.
On some non asymptotic bounds for the Euler scheme.Electronic Journal of Probability, 15:1645–1681, 2010.[Lun97]A. Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic operatorswith unbounded coefficients in {R}n . Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 24(1):133–164, 1997.[Mar55]G. Maruyama.
Continuous markov processes and stochastic equations. Rendiconti delCircolo Matematico di Palermo, 4:48, 1955.95[Men11]S. Menozzi. Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electronic Communications in Probability, 17:234–250, 2011.[Men18]S. Menozzi. Martingale problems for some degenerate Kolmogorov equations. StochasticProcesses and their Applications, 128-3:756–802, 2018.[MP91]R. Mikulevičius and E.
Platen. Rate of convergence of the Euler approximation for diffusion processes. Mathematische Nachrichten, 151:233–239, 1991.[MS67]H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J.Differential Geometry, 1:43–69, 1967.[MSH02]J.C. Mattingly, A.M. Stuart, and D.J. Higham. Ergodicity for sdes and approximations:locally lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications, 101(2):185 – 232, 2002.[Pri09]E.
Priola. Global Schauder estimates for a class of degenerate Kolmogorov equations.Studia Math., 194(2):117–153, 2009.[RBL00]L. Rey-Bellet and L.E. Lawrence. Asymptotic behavior of thermal nonequilibrium steadystates for a driven chain of anharmonic oscillators. Communications in MathematicalPhysics, 215(1):1–24, 2000.[Shi96]A.N. Shiryaev.
Probability, Second Edition. Graduate Texts in Mathematics, 95. SpringerVerlag, New York., 1996.[Son67]I. M. Sonin. A class of degenerate diffusion processes (russian). Teoriya Veroyatnostei iee Primeneniya, 12:540–547, 1967.[SV79]D.W. Stroock and S.R.S. Varadhan. Multidimensional diffusion processes. Springer-VerlagBerlin Heidelberg New-York, 1979.[Tal02]D.
Talay. Stochastic Hamiltonian dissipative systems: exponential convergence to theinvariant measure, and discretization by the implicit Euler scheme. Markov Processes andRelated Fields, 8–2:163–198, 2002.[TT90]D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solvingstochastic differential equations. Stochastic Analysis and Applications, 8-4:94–120, 1990.[Web51]M.
Weber. The fundamental solution of a degenerate partial differential equation ofparabolic type. Transactions of the American Mathematical Society, 71:24–37, 1951.96.