Диссертация (1137276), страница 19
Текст из файла (страница 19)
Manning C. D., Raghavan P., Schütze H. Introduction to InformationRetrieval. Т. 1. — Cambridge university press Cambridge, 2008.16. Sebastiani F. Machine Learning in Automated Text Categorization // ACMcomputing surveys (CSUR). — 2002. — Т. 34, № 1. — С. 1—47.17. Turney P. D. Thumbs Up or Thumbs Down?: Demantic Orientation Appliedto Unsupervised Classification of Reviews // Proc. Annual Meeting onAssociation for Computational Linguistics. — Association for ComputationalLinguistics. 2002. — С. 417—424.18.
Pang B., Lee L., Vaithyanathan S. Thumbs up?: Sentiment ClassificationUsing Machine Learning Techniques // Proce. Empirical Methods in NaturalLanguage Processing. — Association for Computational Linguistics. 2002. —С. 79—86.19. Strapparava C., Valitutti A. WordNet Affect: an Affective Extension ofWordNet. // Proc. Language Resources and Evaluation Conference. Т. 4. —2004. — С. 1083—1086.20. Andrews N.
O., Fox E. A. Recent Developments in Document Clustering. —2007.21. Wong S. K. M., Ziarko W., Wong P. C. N. Generalized Vector Spaces Modelin Information Retrieval // Proc. Conference on Research and Developmentin Information Retrieval. — ACM. 1985. — С. 18—25.22. Pantel P., Lin D. Discovering Word Senses from Text // Proc. Conferenceon Knowledge Discovery and Data Mining. — ACM. 2002.
— С. 613—619.23. Rapp R. Word Sense Discovery Based on Sense Sescriptor Sissimilarity //Proc. Machine Translation Summit. — 2003. — С. 315—322.11224. Combining Independent Modules to Solve Multiple-choice Synonym andAnalogy Problems / P. Turney [и др.]. — 2003.25. Indexing by Latent Semantic Analysis / S. Deerwester [и др.] // Journal ofthe American Society for Information Science. — 1990. — Т. 41, № 6. — С. 391.26. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet Allocation // Journalof Machine Learning Research. — 2003.
— Т. 3. — С. 993—1022.27. Yu C. T., Salton G. Precision Weighting – an Effective Automatic IndexingMethod // Journal of the ACM. — 1976. — Т. 23, № 1. — С. 76—88.28. A Neural Probabilistic Language Model / Y. Bengio [и др.] // journal ofMachine Learning Research. — 2003. — Т. 3, Feb. — С. 1137—1155.29. Mikolov T., Dean J. Distributed Representations of Words and Phrasesand their Compositionality // Advances in Neural Information ProcessingSystems. — 2013.30. Koehn P., Och F. J., Marcu D.
Statistical Phrase-based Translation //Proc. Conference of the North American Chapter of the Association forComputational Linguistics on Human Language Technology. — Associationfor Computational Linguistics. 2003. — С. 48—54.31. Katz S. M. Estimation of Probabilities from Sparse Data for the LanguageModel Component of a Speech Recognizer // Transactions on Acoustics,Speech and Signal Processing. — 1987. — Т.
35, № 3. — С. 400—401.32. Brill E., Moore R. C. An Improved Error Model for Noisy Channel SpellingCorrection // Proce. Annual Meeting on Association for ComputationalLinguistics. — Association for Computational Linguistics. 2000. — С. 286—293.33. Hofmann T. Probabilistic Latent Semantic Indexing // Proc. InternationalConference on Research and Development in Information Retrieval.
— ACM.1999. — С. 50—57.34. Hofmann T. Latent Semantic Models for Collaborative Filtering //Transactions on Information Systems. — 2004. — Т. 22, № 1. — С. 89—115.11335. Using Probabilistic Latent Semantic Analysis for Personalized Web Search /C. Lin [и др.] // Web Technologies Research and Development-APWeb2005. — Springer, 2005. — С. 707—717.36. Berry M.
W., Dumais S. T., O’Brien G. W. Using Linear Algebra forIntelligent Information Retrieval // Society for Industrial and AppliedMathematics Review. — 1995. — Т. 37, № 4. — С. 573—595.37. Wei X., Croft W. B. LDA-based Document Models for Ad-Hoc Retrieval //Proc. International Conference on Research and Development in InformationRetrieval. — ACM. 2006. — С.
178—185.38. Kim H., Howland P., Park H. Dimension Reduction in Text Classificationwith Support Vector Machines // Journal of Machine Learning Research. —2005. — С. 37—53.39. Labeled LDA: A Supervised Topic Model for Credit Attribution in Multilabeled Corpora / D. Ramage [и др.] // Proc. Conference on EmpiricalMethods in Natural Language Processing. — Association for ComputationalLinguistics. 2009. — С. 248—256.40. Gong Y., Liu X. Generic Text Summarization Using Relevance Measure andLatent Semantic Analysis // Proc.
International Conference on Research andDevelopment in Information Retrieval. — ACM. 2001. — С. 19—25.41. Arora R., Ravindran B. Latent Dirichlet Allocation Based Multi-documentSummarization // Proc. Workshop on Analytics for Noisy Unstructured TextData. — ACM. 2008. — С. 91—97.42. Gee K. R. Using Latent Semantic Indexing to Filter Spam // Proc.Symposium on Applied Computing.
— ACM. 2003. — С. 460—464.43. Bıró I.and Szabó J., Benczúr A. A. Latent Dirichlet Allocation in WebSpam Filtering // Proc. International Workshop on Adversarial InformationRetrieval on the Web. — ACM. 2008. — С. 29—32.44. Krestel R., Fankhauser P., Nejdl W. Latent Dirichlet Allocation for TagRecommendation // Proc. Conference on Recommender Systems.
— ACM.2009. — С. 61—68.45. Monay F., Gatica-Perez D. On Image Auto-annotation with Latent SpaceModels // Proc. International Conference on Multimedia. — ACM. 2003. —С. 275—278.11446. Wang X., Grimson E. Spatial Latent Dirichlet Allocation // Advances inNeural Information Processing Systems. — 2008. — С. 1577—1584.47. Gomaa W. H., Fahmy A. A. A Survey of Text Similarity Approaches //International Journal of Computer Applications. — 2013. — Т. 68, № 13.48. Krause E. F. Taxicab Geometry: an Adventure in Non-EuclideanGeometry.
— Courier Corporation, 2012.49. Dice L. R. Measures of the Amount of Ecologic Association betweenSpecies // Ecology. — 1945. — Т. 26, № 3. — С. 297—302.50. Jaccard P. Etude Comparative de la Distribution Florale Dans Une Portiondes Alpes et du Jura. — Impr. Corbaz, 1901.51. Sempson G.
G. Holarctic Mammalian Faunas and Continental RelationshipsDuring the Cenozoic // Geological Society of America Bulletin. — 1947. —Т. 58, № 7. — С. 613—688.52. Cheetham A. H., Hazel J. E. Binary (Presence – Absence) SimilarityCoefficients // Journal of Paleontology. — 1969. — С.
1130—1136.53. Weiner P. Linear Pattern Matching Algorithms // Proc. Annual Symposiumon Switching and Automata Theory. — IEEE. 1973. — С. 1—11.54. Suffix Trees for Very Large Genomic Sequences / M. Barsky [и др.] // Proc.Conference on Information and Knowledge Management. — ACM. 2009. —С. 1417—1420.55. Grossi R., Vitter J. S. Compressed Suffix Arrays and Suffix Treeswith Applications to Text Indexing and String Matching // Journal onComputing.
— 2005. — Т. 35, № 2. — С. 378—407.56. Hu Z., Zhang Y., Zhou J. F. Method for Extracting Name Entities andJargon Terms using a Suffix Tree Data Structure. — Март 2007. — US Patent7,197,449.57. Chim H., Deng X. A New Suffix Tree Similarity Measure for DocumentClustering // Proc. International Conference on World Wide Web. — ACM.2007. — С. 121—130.58. Finding Surprising Patterns in Textual Data Streams / T. Snowsill [и др.] //Proc. Workshop on Cognitive Information Processing. — IEEE. 2010. —С. 405—410.11559.
Gusfield D. Algorithms on Strings, Trees and Sequences: Computer Scienceand Computational Biology. — Cambridge University Press, 1997.60. Дубов М. С., Черняк Е. Л. Аннотированные Суффиксные деревья: Особенности Реализации // Сборник Всеройссийской Конференции МолодыхУченых Анализ Изображений, Сетей и Текстов. — 2013.61. Hjørland B. The Foundation of the Concept of Relevance // Journal of theAmerican Society for Information Science and Technology.
— 2010. — Т. 61,№ 2. — С. 217—237.62. Сегалович И. Как Работают Поисковые Системы // Мир Internet. —2002. — Т. 10. — С. 24—32.63. Taylor A. User Relevance Criteria Choices and the Information SearchProcess // Information Processing & Management. — 2012. — Т. 48, № 1. —С. 136—153.64. Zhai C., Lafferty J. A Study of Smoothing methods for Language ModelsApplied to Ad Hoc Information Retrieval // Proc. International Conferenceon Research and Development in Information Retrieval.
— ACM. 2001. —С. 334—342.65. Миркин Б. Г., Черняк Е. Л., Чугунова О. Н. Метод АннотированногоСуффиксного Дерева для Оценки Степени Вхождения Строк в ТекстовыеДокументы // Бизнес-информатика. — 2012. — 3 (21).66. Миркин Б. Г., Черняк Е. Л. Использование Мер Релевантности Строка –Текст для Автоматизации Рубрикации Научных Статей // Бизнес-информатика. — 2014. — 2 (28).67. Pissanetzky S. Sparse Matrix Technology. — Academic Press, 1984.68. Ceci M., Malerba D. Classifying Web Documents in a Hierarchy of Categories:a Comprehensive Study // Journal of Intelligent Information Systems.