Диссертация (1137218), страница 22
Текст из файла (страница 22)
–INCOMA Ltd., Shoumen, Bulgaria. – 2013. – P. 285–294.44. Galitsky, B. A., Ilvovsky, D., Kuznetsov, S. O., Strok, F. FindingMaximal Common Sub-parse Thickets for Multi-sentence Search.Graph Structures for Knowledge Representation and Reasoning.Springer. – 2014. – P. 39-57.45. Galitsky, B., Ilvovsky, D. A., Kuznetsov, S. O., Strok, F. V.
Parsethicket representations of text paragraphs. Компьютерная лингвистикаи интеллектуальные технологии: По материалам ежегоднойМеждународной конференции «Диалог» В 2-х т. Т. 1: Основнаяпрограмма конференции. Вып. 12 (19). М.: РГГУ, 2013. C. 134-145.46. Ilvovsky, D. Going beyond sentences when applying tree kernels.Proceedings of the Student Research Workshop.‒ ACL 2014.‒ P. 5663.47. Galitsky B., Ilvovsky D., Kuznetsov S. Rhetoric map of an answer tocompound queries.‒ ACL-IJCNLP 2015 - 53rd Annual Meeting of theAssociation for Computational Linguistics and the 7th InternationalJoint Conference on Natural Language Processing of the AsianFederation of Natural Language Processing, Proceedings of theConference.
Vol. 2: Short papers. Beijing: 2015. P. 681-686.48. Galitsky B., Ilvovsky D., Kuznetsov S. O. Text Classification intoAbstract Classes Based on Discourse Structure. Proceedings of theRecent Advances in Natural Language Processing, RANLP 2015.Hissar: 2015. P.
201-207.15549. Galitsky B., Ilvovsky D., Kuznetsov S. Text integrity assessment:Sentiment profile vs rhetoric structure. Computational Linguistics andIntelligent Text Processing. 16th International Conference, CICLing2015, Cairo, Egypt, April 14-20, 2015, Proceedings, Part II. Vol. 9042.Springer International Publishing, 2015. P. 126-139.50. Mahalova T. N., Ilvovsky D., Galitsky B. Pattern structures for newsclustering. Proceedings of the International Workshop "What can FCAdo for Artificial Intelligence?" (FCA4AI at IJCAI 2015).
Buenos Aires:2015. Ch. 5. P. 35-42.51. Strok F. V., Galitsky B., Ilvovsky D. Pattern Structure Projections forLearning Discourse Structures. Artificial Intelligence: Methodology,Systems, and Applications 16th International Conference, AIMSA2014, Varna, Bulgaria, September 11-13, 2014. Proceedings. Vol. 8722.L., NY, Dordrecht, Heidelberg, Springer, 2014. P. 254-260.52.
Galitsky, B., Ilvovsky, D. A., Chernyak, E.L., Kuznetsov S. O. Styleand Genre Classification by Means of Deep Textual Parsing.Компьютерная лингвистика и интеллектуальные технологии: Поматериалам ежегодной Международной конференции «Диалог».М.: РГГУ, 2016. C. 171-181.53. Bhasker, B., Srikumar, K. Recommender Systems in E-Commerce.CUP. – 2010.54.
Thorsten, H., Marchand, A., Marx, P. Can Automated GroupRecommender Systems Help Consumers Make Better Choices? Journalof Marketing. – 2012. – Vol. 76 (5). – P. 89–109.55. Montaner, M., Lopez, B., de la Rosa, J. L. A Taxonomy ofRecommender Agents on the Internet. Artificial Intelligence Review.
–2003. – Vol. 19 (4). – P. 285–330.15656. Taylor, A., Marcus, M., Santorini, B. The Penn treebank: an overview.Springer Netherlands. – Treebanks. – 2003. – P. 5-22.57. Chomsky, N. Three models for the description of language. InformationTheory. – IEEE Transactions. – Vol. 2 (3). – 1956 – P. 113–124.58. Punyakanok, V., Roth, D., Yih W.
The Necessity of Syntactic Parsingfor Semantic Role Labeling // IJCAI-05. – 2005.59. Domingos, P., Poon, H. Unsupervised Semantic Parsing. Proceedingsof the 2009 Conference on Empirical Methods in Natural LanguageProcessing. – 2009. – Singapore, ACL.60. Abney, S. Parsing by Chunks.
Principle-Based Parsing. KluwerAcademic Publishers. – 1991. – P. 257–278.61. Galitsky,B.,RepresentationsUsikov,forD.,Kuznetsov,AnsweringS.O.Multi-sentenceParseThicketquestions.20thInternational Conference on Conceptual Structures, ICCS 2013. – 2013.62. Mill, J.S. A system of logic, ratiocinative and inductive. – London,1843.63.
Finn, V.K. On the synthesis of cognitive procedures and the problem ofinduction. NTI. Series 2. – 1999. – № 1–2. – P. 8–45.64. Mitchell, T. Machine Learning. McGraw Hill. – 1997.65. Furukawa, K. From Deduction to Induction: Logical Perspective. TheLogic Programming Paradigm / еds. K. R. Apt, V. W.
Marek, M.Truszczynski, D. S. Warren. – Springer, 1998.66. Fukunaga, K. Introduction to statistical pattern recognition. AcademicPress Professional Inc. – San Diego, CA, 1990.15767. Jurafsky, D., Martin, J. Speech and Language Processing: AnIntroductiontoNaturalLanguageProcessing,ComputationalLinguistics, and Speech Recognition. – 2008.68. Byun, H., Lee, S. Applications of Support Vector Machines for PatternRecognition: A Survey. Proceedings of the First InternationalWorkshop on Pattern Recognition with Support Vector Machines (SVM'02), Seong-Whan Lee and Alessandro Verri (Eds.). – 2002. – SpringerVerlag.
London, UK. – P. 213–236.69. Manning, C., Schütze, H. Foundations of Statistical Natural LanguageProcessing. MIT Press. – 1999. – Cambridge, MA.70. Robinson, J.A. A machine-oriented logic based on the resolutionprinciple. Journal of the Association for Computing Machinery. – 1965.– Vol. 12. – P.
23–41.71. Plotkin, G.D. A note on inductive generalization. B. Meltzer and D.Michie (Eds.). Machine Intelligence. – 1970. – Vol. 5. Elsevier NorthHolland, New York. – P. 153–163.72. Galitsky, B., Kuznetsov, S.O. Learning communicative actions ofconflicting human agents. J. Exp. Theor. Artif. Intell. – 2008. – Vol.20(4). – P. 277–317.73. Galitsky B., de la Rosa, J., Dobrocsi, G. Inferring the semanticproperties of sentences by mining syntactic parse trees. Data &Knowledge Engineering.
– 2012. – Vol. 81–82. – P. 21–45.74. Mann, W., Thompson, S. Rhetorical Structure Theory: Toward aFunctional Theory of Text Organization. Text. 8(3). – 1988. – P. 243–281.75. Mann, W., Matthiessen, C., Thompson, S. Rhetorical Structure Theoryand Text Analysis. Discourse Description: Diverse linguistic analyses158of a fund-raising text / ed. by W.
C. Mann and S. A. Thompson. –Amsterdam. – 1992. – P. 39–78.76. Collins, M., Duffy, N. Convolution kernels for natural language.Proceedings of NIPS. – 2002. – P. 625–632.77. Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M.,Jurafsky, D. Deterministic coreference resolution based on entitycentric, precision-ranked rules. Computational Linguistics. – 2013.78. Zelenko, D., Aone, C., Richardella, A. Kernel methods for relationextraction.
JMLR. – 2003.79. Zhang, M., Che, W., Zhou, G., Aw, A., Tan, C., Liu, T., Li, S. Semanticrole labeling using a grammar-driven convolution tree kernel. IEEEtransactions on audio, speech, and language processing. – 2008. – Vol.16 (7). – P. 1315–1329.80. Zhang, M., Zhang, H., Li, H., Convolution Kernel over Packed ParseForest. ACL-2010. 2010.81. Vapnik, V.
The Nature of Statistical Learning Theory. – SpringerVerlag. – 1995.82. Searle, J. Speech acts: An essay in the philosophy of language. –Cambridge: Cambridge University. – 1969.83. Marcu, D. From Discourse Structures to Text Summaries. Proceedingsof ACL Workshop on Intelligent Scalable Text Summarization / eds. I.Mani and M. Maybury.
– Madrid, 1997. – P. 82–88.84. Hardmeier, C. Discourse in statistical machine translation. – 2014.85. Joty, S., Nakov, P. DiscoTK: Using discourse structure for machinetranslation evaluation. Proceedings of the Ninth Workshop onStatistical Machine Translation. – 2014.15986. Webber B., Egg M., Kordoni V. Discourse structure and languagetechnology //Natural Language Engineering. – 2012.
– Т. 18. – №. 04. –С. 437-490.87. Feng, V. W., Hirst, G. Patterns of local discourse coherence as a featurefor authorship attribution. Literary and Linguistic Computing. – 2014. –Т. 29. – №. 2. – С. 191-198.88. Joyce, Y., Rong, J. Discourse structure for context question answering.HLT-NAACL 2004: Workshop on Pragmatics of Question Answering,pages 23–30.
– 2004.89. Verberne, S., Boves, L., Oostdijk, N., Coppen, P. Evaluating discoursebased answer extraction for why-question answering. Proceedings ofthe 30th annual international ACM SIGIR conference on Research anddevelopment in information retrieval, pages 735–736.
ACM. – 2007.90. Ganter, B., Kuznetsov, S. O. Pattern Structures and Their Projections,ICCS '01. – 2001. – P. 129–142.91. Kann, V. On the Approximability of the Maximum Common SubgraphProblem. In (STACS '92) / еds. Alain Finkel and Matthias Jantzen. –1992. – Springer-Verlag, London, UK. – P. 377–388.92.
Sun, J., Zhang, M., Lim Tan, C. Tree Sequence Kernel for NaturalLanguage. AAAI-25. – 2011.93. Dean, J. Challenges in Building Large-Scale Information RetrievalSystems.URL:research.google.com/people/jeff/WSDM09-keynote.pdf.94. Galitsky, B. Machine Learning of Syntactic Parse Trees for Search andClassification of Text. Engineering Application of AI. URL:http://dx.doi.org/10.1016/j.engappai.2012.09.017.16095. Kottmann, J., Ingersoll, G., Kosin, J., Galitsky, B.