Главная » Просмотр файлов » Н.Н. Калиткин - Численные методы

Н.Н. Калиткин - Численные методы (1133437), страница 3

Файл №1133437 Н.Н. Калиткин - Численные методы (Н.Н. Калиткин - Численные методы) 3 страницаН.Н. Калиткин - Численные методы (1133437) страница 32019-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Приведенные в нем учебники и монографии рекомендуются для углубленного изучения отдельных разделов, Журнальные статьи даны для указания на оригинальные работы, йх список не претендует на полноту; более полная библиография имеется в рекомендованных учебниках. Общий подход к теории и практике вычислений, определивший стиль этой книги, сложился у меня под влиянием А.

А, Самарского и В. Я, Гольдина за много лет совместной работы. Ряд актуальных тем был включен по инициативе А, Г. Свешникова и В. Б. Гласко. Много ценных замечаний сделали А. В. Гулин, Б. Л, Рождественский, И. М. Соболь, И. В. Фрязинов, Е. В.

Шикин и сотрудники кафедры прикладной математической физики МИФИ. В оформлении рукописи мне помогли Л. В. Кузьмина и В. А. Красноярова. Я пользуюсь случаем искренне поблагодарить всех названных лиц, и в особенности Александра Андреевича Самарского, Н. Н.

Калиткин ГЛАВА ! ЧТО ТАКОЕ ЧИСЛЕННЫЕ МЕТОДЫ? Глава 1 является вводной. В 1 ! рассмотрены роль математнки при решении фнзико-технических задач и место численных методов среди других математических методов и кратко изложена история численных методов. В 1 2 разобраны основные понятия приближенного анализа: корректность постановки задач, определение близости точного и приближенного решений, структура погрешности. $1. Математические модели и численные методы 1. Решение задачи.

Физиков математика интересует не сама по себе, а как средство решения физических задач. Рассмотрим поэтому, как решается любая реальная задача — например, нахождение светового потока конструируемой лампы, производительности проектируемой химической установки или себестоимости продукции строящегося завода. Одним из способов решения является эксперимент. Построим эту лампу, установку или завод и измерим интересующую нас характеристку. Если характеристика оказалась неудачной, то изменим проект и построим новый завод и т. д.

Ясно, что мы получим достоверный ответ на вопрос, но слишком медленным н дорогим способом, Другой способ — математический анализ конструкции или явления. Но такой анализ применяется не к реальным явлениям, а к некоторым математическим моделям этих явлений. Поэтому первая стадия работы — это формулировка математической модели (постановка задачи). Для физического процесса модель обычно состоит из уравнений, описывающих процесс; в эти уравнения в виде коэффициентов входят характеристики тел или веществ, участвующих в процессе. Например, скорость ракеты при вертикальном полете в вакууме определяется уравнением ~.гао ! М вЂ” ')т (т) с)т| ! — + й) =- ст (!), )~~ег (1) где М вЂ” начальная масса рабаты, т(!) — заданный расход горю- 14 [ГЛ.

! ЧТО ТАКОЕ ЧИСЛЕННЫЕ МЕТОДЫ? чего, д — ускорение поля тяготения, а с — скорость истечения газов, зависящая от калорийности топлива и среднего молекулярного веса продуктов сгорания, Любое изучаемое явление бесконечно сложно. Оно связано с другими явлениями природы, возможно, не представляющими интереса для рассматриваемой задачи.

Математическая модель должна охватывать важнейшие для данной задачи стороны явления. Наиболее сложная и ответственная работа при постановке задачи заключается в выборе связей и характеристик явления, существенных для данной задачи и подлежащих формализации и включению в математическую модель. Если математическая модель выбрана недостаточно тщательно, то, какие бы методы мы ни применяли для расчета, все выводы будут недостаточно надежны, а в некоторых случаях могут оказаться совершенно неправильными.

Так, уравнение (1) непригодно для запуска ракеты с поверхности Земли, ибо в ием не учтено сопротивление воздуха. Вторая стадия работы — это математическое исследование. В зависимости от сложности модели применяются различные математические подходы. Для наиболее грубых и несложных моделей зачастую удается получить аналитические решения; это излюбленный путь многих физиков-теоретиков. Например, уравнение (1) легко интегрируется при д=сопз1 и и (1) =сопз1: о = с! п (М! (М вЂ” т1)) — п1. Из-за грубости модели физическая точность этого подхода невелика; нередко такой подход позволяет оценить лишь порядки величин.

Для более точных и сложных моделей аналитические решения удается получить сравнительно редко. Обычно теоретики пользуются приближенными математическими методами (например, разложением по малому параметру), позволяющими получить удовлетворительные качественные и количественные результаты. Наконец, для наиболее сложных и точных моделей основными методами решения являются численные; как правило, они требуют проведения расчетов на ЭВМ. Эти методы зачастую позволяют добиться хорошего количественного описания явления, не говоря уже о качественном. Во всех случаях математическая точность решения должна быть несколько (в 2 — 4 раза) выше, чем ожидаемая физическая точность модели.

Более высокой математической точности дабиваться бессмысленно, ибо общую точность ответа это все равно не повысит. Но более низкая математическая точность недопустима (для облегчения решения задачи нередко в .ходе работы делают дополнительные математические упрощения; это снижает ценность результатов). $ ц млтемхтичяскиа модели и числанныг методы 15 Наконец, третья стадия работы — зто осмысливание математического решения и сопоставление его с экспериментальнымн данными. Если расчеты хорошо согласуются с контрольнымн экспериментами, то это свидетельствует о правильном выборе модели; такую модель можно использовать для расчета процессов данного типа.

Если же расчет и эксперимент не согласуются, то модель необходимо пересмотреть и уточнить. 2. Численные методы являются одним из мощных математических средств решения задачи. Простейшие численные методы мы используем всюду, нагример, извлекая квадратный корень на листке бумаги.

Есть задачи, где без достаточно сложных численных методов не удалось бы получить ответа; классический пример — открытие Нептуна по аномалиям движения Урана. В современной физике таких задач много, Более того, часто требуется выполнить огромное число действий за короткое время, иначе ответ будет не нужен. Например, суточный прогноз погоды должен быть вычислен за несколько часов; коррекцию траектории ракеты надо рассчитать за несколько минут (напомним, что для расчета орбиты Нептуна Леверье потребовалось полгода); режим работы прокатного стана должен исправляться за секунды.

Это немыслимо без мощных ЭВМ, выполняющих тысячи или даже миллионы операций в секунду. Современные численные методы и мощные ЭВМ дали возможность решать такие задачи, о 'которых полвека назад могли только мечтать. Но применять численные методы далеко не просто. Цифровые ЭВМ умеют выполнять только арифметические действия и логические операции. Поэтому помимо разработки математической модели, требуется еще разработка алгоритма, сводящего все вычисления к последовательности арифметических и логических действий. Выбирать модель и алгоритм надо с учетом скорости н объема памяти ЭВМ: чересчур сложная модель может оказаться машине не под силу, а слишком простая — не даст физической точности.

Сам алгоритм и программа для ЭВМ должны быть тщательно проверены. Даже проверка программы нелегка, о чем свидетельствует популярное утверждение: «В любой сколь угодно малой программе есть по меньшей мере одна ошибка». Проверка алгоритма еще более трудна, ибо для сложных алгоритмов не часто удается доказать сходимость классическими методами. Приходится использовать более или менее надежные «экспернментальные» проверки, проводя пробные расчеты на ЭВМ и анализируя их (смотри, например, главу 1Х, 5 4, п. 3).

Строгое математическое обоснование алгоритма редко бывает исчерпывающим исследованием. Например, большинство доказательств сходнмости итерационных процессов справедливо только при точном выполнении всех вычислений; практически же число 16 ЧТО ТАКОЕ ЧИСЛЕННЫЕ МЕТОДЫ» [ГЛ. ! сохраняемых десятичных знаков редко происходит 5 — 6 при «ручных» вычислениях и 10 — 12 при вычислениях 'на ЭВМ. Плохо поддаются теоретическому исследованию «маленькне хитрости»вЂ” незначительные на первый взгляд детали алгоритма, сильно влияющие на его эффективность.

Поэтому окончательную оценку метода можно дать только после опробования его в практических расчетах. К чему приводит пренебрежение этими правилами — видно из принципа некомпетентности Питера: «ЭВМ многократно увеличиваег некомпетентность вычислителя». Для сложных задач разработка численных методов и составление программ для ЭВМ очень трудоемки и занимают от нескольких недель до нескольких лет, Стоимость комплекса отлаженных программ нередко сравнима со стоимостью экспериментальной физической установки.

Зато проведение отдельного расчета по такому комплексу много быстрей и дешевле, чем проведение отдельного эксперимента. Такие комплексы позволяют подбирать оптимальные параметры исследуемых нонструкцнй, что не под силу эксперименту. Однако численные методы не всесильны. Они не отменяют все остальные математические методы. Начиная исследовать проблему, целесообразно использовать простейшие модели, аналитические методы и прикидки. И только разобравшись в основных чертах явления, надо переходить к полной модели и .сложным численным методам; даже в этом случае численные методы выгодно применять в комбинации с точными и приближенными аналитическими методами.

Современный физик илн инженер-конструктор для успешной работы должен одинаково хорошо владеть и «классическими» методами, и численными методами математики. 3. История прикладной математики. Раздел математики, имеющий дело с созданием и обоснованием численных алгоритмов для решения сложных задач различных областей науки, часто называют прикладной математикой; американцы применение численных методов к физическим задачам называют вычислительной физикой. Главная задача прикладной математики †фактическ нахождение решения с требуемой точностью; этим она отличается от классической математики, которая основное внимание уделяет исследованию условий существования н свойств решения. В истории прикладной математини мол«но выделить три основных периода. Первый начался 3 — 4 тысячи лет назад.

Ои был связан с ведением конторских книг, вычислением площадей и объемов, расчетами простейших механизмов; иными словами — с несложными задачами-арифметики, алгебры и геометрии. Вычислительными средствами служили сначала собственные пальцы, а затем ПРИБЛИЖЕННЫЙ АНАЛИЗ вЂ” счеты. Исходные данные содержали мало цифр, и большинство выкладок выполнялось точно, без округлений. Второй период начался с Ньютона. В этот период решались задачи астрономии, геодезии и расчета механических конструк- ций, сводящиеся либо к обыкновенным-дифференциальным урав- нениям, либо к алгебраическим системам с большим числом не- известных.

Вычисления выполнялись с округлением; нередко от результата требовалась высокая точность, так что приходилось сохранять до 8 значащих цифр, Вычислительные средства стали разнообразнее: таблицы эле- ментарных функций, затем — арифмометр и логарифмическая линейка; к концу этого периода появились неплохие клавишные машйны с электромотором. Но скорость всех этих средств была невелика, и вычисления занимали дни, недели я даже месяцы.

Третий период начался примерно с 1940 г. Военные задачи— например, наводка зенитных орудий на быстро движущийся са- ' молет — требовали недоступных человеку скоростей и привели к разработке электронных систем. Появились электронные вычис- лительные машины (ЭВМ). Скорость даже простейших ЭВМ настолько превосходила ско- рость механических средств, что стало возможным проводить вы- числения огромного объема.

Характеристики

Тип файла
PDF-файл
Размер
21,94 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее