1 (1131253), страница 24
Текст из файла (страница 24)
До сих пор мы рассматривали протоколы с состязаниями только в так называемой симметричной конфигурации: все станции, пытающиеся передать кадр, получали канал с одной и той же для всех вероятностью р. Оказывается, общая производительность системы может быть улучшена, если разным станциям будет сопоставлена разная вероятность.
Рассмотрим производительность в случае симметричного случая. Пусть у нас есть k станций, каждая из которых с вероятностью p готова передать кадр. Тогда вероятность, что какая-то станция успешно передаст свой кадр, равна kp(1-p)k-1. Эта вероятность достигает максимума при p=1/k. Тогда вероятность передать сообщение какой-либо станцией равна
При небольшом числе станций шансы передать кадр достаточно велики, но с ростом числа станций эти шансы резко падают. Единственным способом увеличить шансы на передачу является сократить конфликты. Для этого в протоколах с ограниченным числом конфликтов все станции разбивают на непересекающиеся группы. За слот с номером 0 состязаются только станции из группы 0. Если передавать нечего или была коллизия, то начинают состязания за слот 1 члены группы 1, и т.д. В результате в каждом слоте конкуренция падает. Основную сложность в этом методе составляет распределение станций по группам.
Адаптивный древовидный протокол устроен по принципу тестирования солдат американской армии на сифилис во второй мировой войне. У n солдат брали кровь на анализ. В первой пробе в общей пробирке смешивали часть крови каждого солдата. Если тест давал отрицательный результат, то все n считались здоровыми. Если тест давал положительную реакцию, то в пробирке смешивали только кровь первой половины солдат и опять тестировали. Если был положительный результат, то эту половину делили опять пополам и т.д., пока не обнаруживали носителя.
На рисунке 4-8 показано, как эта процедура применяется к станциям. Станции - листья. За слот 0 борются все станции. Если какая-то победила - хорошо. Если нет, то за слот 1 борются только станции поддерева с корнем в вершине 2. Если какая-то победила, то следующий слот резервируется для станций поддерева 3. Если был конфликт, то за следующий слот борются станции поддерева 4, и т.д.
Рисунок 4-8. Дерево для восьми станций
Когда число станций велико и все они готовы передавать, то вряд ли целесообразно начинать поиск с уровня 0 в дереве. Возникает вопрос: с какого уровня надо начинать эту процедуру при заданном числе станций? Пусть число станций, готовых к передаче, нормально распределено. Обозначим это число через q. Тогда число станций, готовых к передаче и расположенных ниже уровня i, будет ровно 2-iq. Заметим, что их доля от общего числа станций, расположенных в дереве ниже уровня i, равна 2-i. Естественно, надо подобрать такое соотношение между i и q, когда количество конкурирующих станций будет 1, т.е. 2-iq=1, или log2q=i.
У этого алгоритма есть много вариантов. Мы здесь описали лишь основную идею.
Протоколы с множественным доступом и разделением частот.
Иной подход к распределению доступа к каналу основан на разделении канала на подканалы, используя FDM-, TDM-метод или сразу оба этих метода.
Здесь мы рассмотрим работу протоколов множественного доступа для оптоволоконных систем. Они построены на идее разделения частот. Вся полоса разделяется на каналы по два на станцию. Один, узкий, - управляющий канал, второй, широкий, - для передачи данных. Каждый канал разбит на слоты. Все слоты синхронизируются от единых часов. Отмечается только нулевой слот, чтобы можно было определить начало каждого цикла.
Обозначим через m число слотов в управляющем канале и через n+1 - в канале данных. Из них n слотов - для данных, а последний - для сообщения о статусе канала. Протокол поддерживает три класса трафика:
-
Постоянный с соединением (видео)
-
Переменный с соединением (передача файлов)
-
Дейтаграммный (типа UDP)
У каждой станции есть два ресивера и два трансивера:
-
Ресивер для фиксированной длины волны для канала управления
-
Настраиваемый трансивер для передачи в каналы управления других станций
-
Трансивер для фиксированной длины волны для передачи данных
-
Настраиваемый ресивер для получения данных
Другими словами, каждая станция постоянно слушает свой управляющий канал, но должна настраиваться при приеме на волну передающей станции. Рассмотрим, как станция А устанавливает соединение класса 2 со станцией В для передачи файла. А настраивается на управляющий канал станции В, чтобы определить, какие слоты уже заняты, а какие свободны. На рисунке 4-9 видно, что у В из 8 управляющих слотов свободны 0, 4 и 5.
Рисунок 4-9. Множественный доступ с разделением частот
А выбирает, например, 4-й слот и помещает туда свой CONNECTION REQUEST. Станция В видит этот запрос и закрепляет слот 4 за станцией А, о чем сообщает ей через статусный слот. Для станции А это означает, что установлено однонаправленное соединение от А к В. Если нужно двунаправленное соединение, то В должна повторить все, что сделала А. Если в момент попытки А захватить слот у В другая станция, например, С, также попытается это сделать, возникнет конфликт, о котором и А, и С узнают через статусный слот управляющего канала.
После того как соединение установлено, А посылает В управляющее сообщение типа: «Жди. В слоте 3 канала данных есть кадр». Получив такое сообщение, В настраивается на волну канала А и считывает кадр. Таким образом, мы имеем бесконфликтный канал. Хотя может случиться, что если А и С имеют соединение с В и оба скажут «смотри на слот 3, там кадр от меня», то от какого из двух получит сообщение В, сказать заранее нельзя.
В случае дейтаграмм А шлет не запрос на соединение, а сообщение типа: «В слоте 3 для тебя есть кадр». Существует несколько вариантов этого WDMA-протокола.
Билет № 27.
Сотовая связь: пейджинг, сотовые и радиотелефоны (система AMPS, GSM, GPRS, UMTS, CDMA).
Развитая мобильная телефонная система – AMPS.
В 1982 году компания Bell Labs предложила систему AMPS (Advanced Mobil Telephone System). Идея этой системы очень проста. Вместо того чтобы охватить сразу всю территорию небольшим числом каналов, эту территорию разбивают на небольшие части – соты. В каждой соте используют свой набор каналов, но так, чтобы частоты каналов у соседних сот не пересекались, т.е. не было общих частот. Такая организация системы дает выигрыш в использовании частот из-за их повторного использования, увеличивается емкость сети – число одновременно обслуживаемых пользователей. Кроме этого, в системе можно использовать маломощные сигналы, а следовательно, передатчик может быть компактным, т.к. не требуется мощных источников питания. Если в каких-то сотах из-за большого числа пользователей отказы в соединении становятся слишком частыми из-за большого числа пользователей, то эту соту можно разделить на несколько новых.
Каждая сота имеет базовую станцию (базу), состоящую из компьютера и приемно-передающей аппаратуры. Несколько баз подключаются к Центру мобильной коммутации (MSC). В небольших системах может быть достаточно одного центра. В больших системах может потребоваться несколько центров. MSC-центры соединяются друг с другом и с обычной наземной телефонной сетью и, при необходимости, коммутируют звонок с мобильного телефона на обычный телефон.
При перемещении телефона ближайшие базовые станции сравнивают уровень сигнала от него и та база, у которой этот уровень выше, чем у других, берет его под свой контроль. Телефон получает сообщение об изменении базы.
В системе AMPS используется метод разделения частот - FDMA. Весь диапазон частот 824-894 МГц разделены на 832 дуплексных канала: 824-859 MГц для передачи и 860–894 МГц - для приема. Каждый канал имеет ширину 30 КГц. Все каналы делятся на четыре категории:
-
Управляющие
-
Для сообщений
-
Установки доступа и распределения каналов
-
Данные - голос, факс и прочие
В системе AMPS у каждого телефона есть встроенный 32-битовый серийный номер и телефонный номер, состоящий из 10 цифр: 3 цифры – код зоны (10 бит) и 7 цифр (24 бита) – номер абонента. Когда телефон включают, он начинает сканировать запрограммированный в нем список из 21 каналов управления, чтобы обнаружить наиболее мощный сигнал. По информации из управляющего канала он узнает распределение каналов для сообщений, установки соединений и доступа, передачи данных.
Затем телефон сообщает свой 32-битовый серийный номер и 34-битовый телефонный номер. Эта информация в AMPS-системе передается пакетом в цифровом виде несколько раз, кодируется специальным кодом с коррекцией ошибок, хотя голос передают по аналоговому каналу.
Когда базовая станция получает такой пакет от телефона, она запрашивает у своего MSC-центра информацию о новом клиенте и сообщает домашней MSC, т.е. MSC, к которой приписан этот телефон, о его текущем местоположении. Обычно такая перерегистрация телефона происходит каждые 15 минут.
Чтобы позвонить, абонент включает телефон, набирает номер нужного абонента и нажимает кнопку «Послать» (Send). Телефон по каналу установки доступа посылает в цифровом виде пакет, содержащий информацию о нем и о телефоне вызываемого абонента. Если происходит коллизия или ошибка, то попытка повторяется несколько раз. Получив запрос, базовая станция информирует о нем MSC. Если нужный абонент – это абонент компании, которой принадлежит MSC, то MSC ищет свободный канал для данных. Если такой найден, то MSC информирует о нем вызывающий телефон по каналу управления. Вызывающий телефон переключается на прием по указанному каналу и ждет, когда на вызываемом телефоне поднимут трубку (нажмут кнопку «Прием»).
Входящий звонок обрабатывается несколько иначе. В режиме ожидания телефон постоянно следит за каналом сообщений: не появится ли там сообщение для него. Когда вызывающий телефон сгенерировал запрос, то от MSC поступает запрос на домашнюю MSC вызываемого телефона, чтобы определить, в какой соте находится вызываемый телефон. Пакет с вызовом направляется последней базовой станции, зарегистрировавшей телефон с искомым номером, например, 46. Базовая станция распространяет по каналу сообщений специальное сообщение типа: «46-й, ты здесь?» Вызываемый телефон отвечает по каналу управления специальным пакетом типа «Да». Тогда базовая станция шлет по каналу управления пакет «46-ой, для вас вызов на канале 8». После этого вызываемый телефон переключается на канал 8 и начинает звонить.
К сожалению, аналоговые сотовые телефоны абсолютно не защищены. Любой, у кого есть радиоприемник нужного диапазона, может, настроив его на один из голосовых каналов, просто прослушать разговор. Злоумышленник может перехватывать информацию из каналов управления, содержащую 32-битовые номера телефонных трубок и 34-битовые номера, а затем разговаривать за чужой счет. И многое, многое другое. Это один из главных недостатков аналоговых сотовых телефонов.
GSM – Глобальная система для мобильной связи.
Первые сотовые телефонные системы были аналоговыми. Им на смену пришли цифровые системы, которые составили второе поколение сотовых систем. В настоящее время происходит переход на сотовые системы 3G – системы третьего поколения.
В 80-е годы в Европе существовало пять разных сотовых аналоговых телефонных систем. Поэтому, переезжая из страны в страну, пользователи были вынуждены менять и телефонные аппараты. Ясно, что это было чрезвычайно неудобно. Как результат, европейцы создали единую цифровую систему, известную как GSM (Global System for Mobile communications), которая была введена в действие ранее американских и японских аналогов.
Итак, GSM - это полностью цифровая система. Ее успех был во многом связан с тем, что она проектировалась без оглядки на уже существующие аналоговые системы, ее авторы не пытались сделать ее совместимой с ними.
Основная цель стандарта GSM была обеспечить людям возможность, свободно передвигаясь, как внутри страны, так и между странами, поддерживать связь с любыми абонентами сети. При этом в каждой стране может быть одна или несколько функционирующих сетей. Каждая такая сеть называется Региональной мобильной сетью оператора (PLMN). Зона действия каждой PLMN-сети ограничена национальными границами, в одной стране, впрочем, может быть несколько PLMN-сетей.
GSM-пользователь заключает контракт с одной из PLMN-сетей, называемой домашней. В этом контракте указаны услуги, доступные этому пользователю. При желании во время работы пользователь может выбрать другую PLMN-сеть, если ему доступны ее услуги. Терминал пользователя (в GSM его называют мобильной станцией – MS) обеспечивает пользователю такой выбор и показывает список доступных PLMN-сетей. Выбор из этого списка пользователь может сделать сам явно, или MS-терминал сделает это автоматически с помощью заложенного в нее программного обеспечения.















