Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 6

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 6 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 62019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Утверждение

<Zp,+(mod p), ∙ (mod p)> — поле, если p – простое число.

Доказательство:

Согласно утверждению 1, <Zp,+(mod p)> - абелева группа, причем в качестве нулевого элемента выступает 0 Zp. Поскольку Zp покрывает своими вычетами всё множество целых чисел, а операция умножения не выводит целые числа за пределы Z, то и операция умножения по модулю p не выводит за пределы Zp. То есть операция ∙ (mod p) задана на Zp.

Ассоциативность и коммутативность операции ∙ (mod p) следует из аналогичных свойств операции умножения, дистрибутивность умножения по модулю p относительно сложения по модулю p следует из дистрибутивности умножения относительно сложения.

В качестве единицы по операции ∙ (mod p) выступает 1 Zp.

Итак, <Zp,+(mod p), ∙ (mod p)> — коммутативное кольцо с единицей. А поскольку в силу простоты p все элементы, кроме нулевого, взаимно просты с модулем p, то, по теореме обратимости, обратим по операции ∙ (mod p).

Следовательно, по определению поля, <Zp,+(mod p),∙(mod p)> — поле.

Из курса алгебры мы знаем, что поле, содержащее конечное число элементов, называется конечным полем. Конечные поля называются полями Галуа по имени их первооткрывателя, Эвариста Галуа.

Число элементов в поле называется его мощностью. Все поля одинаковой мощности изоморфны друг другу. Таким образом, любое поле, мощность которого есть простое число, изоморфно <Zp,+(mod p),∙(mod p)> для подходящего p.

Поле <Zp,+(mod p),∙(mod p)> иначе обозначается GF(p), то есть поле Галуа мощности p.

Кроме полей GF(p) существуют поля составной мощности. Различают GF(2α), GF(pα) (где p – простое число, не равное 2 ). В настоящей главе мы будем рассматривать поля GF(p), получим для таких полей некоторые результаты, а затем, во второй главе, обобщим их и на другие конечные поля.

3.6. Теоремы Эйлера и Ферма. Тест Ферма на простоту.

В этом пункте будут доказаны важнейшие теоремы теории чисел и показаны их приложения к задачам криптографии.

Теорема Эйлера.

При m > 1, (a, m) = 1 aφ(m) ≡ 1 (mod m).

Доказательство:

Если x пробегает приведенную систему вычетов x = r1, r2,…,rc (c = φ(m)), составленную из наименьших неотрицательных вычетов, то в силу того, что (a,m)=1, наименьшие неотрицательные вычеты чисел ax = ρ1, ρ2,…, ρc будут пробегать ту же систему, но, возможно, в другом порядке (это следует из утверждения 2 пункт 3). Тогда, очевидно,

r1·…·rc = ρ1·… ·ρc *

Кроме того, справедливы сравнения

ar1 ≡ ρ1(mod m), ar2 ≡ ρ2(mod m), … , arc ≡ ρc(mod m).

Перемножая данные сравнения почленно, получим

ac ·r1 ·r2 ·…·rc ≡ ρ 1·…· ρ c(mod m)

Откуда в силу (*) получаем

ac ≡ 1 (mod m)

А поскольку количество чисел в приведенной системе вычетов по модулю m есть φ(m), то есть c = φ(m), то

aφ(m) ≡ 1 (mod m).

Теорема Ферма (малая)

р – простое, p не делит a ap–1 ≡ 1 (mod m)

Доказательство: по теореме Эйлера при m=p.

Важное следствие:

apa (mod p) a, в том числе и для случая p\a.

Теорема Эйлера применяется для понижения степени в модулярных вычислениях.

Пример:

10100 mod 11 = 109∙11+1 = 109+1 mod 11 = (–1)10 mod 11 = 1.

Следствие:

Если a: 0 < a < p, для которого ap–1 1 (mod p) p – составное.

Отсюда –

Тест Ферма на простоту

Вход: число n – для проверки на простоту, t – параметр надежности.

  1. Повторяем t раз:

а) Случайно выбираем a [2, n-2]

б) Если an–1 1 (mod n) «n – составное». Выход.

  1. «n – простое с вероятностью 1– εt »

Этот тест может принять составное число за простое, но не наоборот.

Вероятность ошибки есть εt, где ε

В случае составного числа n, имеющего только большие делители, ε , то есть существуют числа, для которых вероятность ошибки при проверке их на простоту тестом Ферма близка к 1.

Для теста Ферма существуют так называемые числа Кармайкла – такие составные числа, что a: (a,n) = 1 an1 ≡ 1(mod n). То есть числа Кармайкла – это такие составные числа, которые всегда принимаются тестом Ферма за простые, несмотря на то, как велико число t – параметр надежности теста.

Теорема Кармайкла

n – число Кармайкла 1) n свободно от квадратов (т.е. n = p1p2∙…∙pk);

2) (pi – 1)\(n – 1), i = 1,…,k ;

3) k .

Наименьшее известное число Кармайкла n=561 = 3∙11·17

3.7. Применение теоремы Эйлера в RSA:

Если известно разложение числа на простые сомножители a = p1 p2 pn , то легко вычислить функцию Эйлера φ(a).

Отсюда вывод: сложность вычисления функции Эйлера не выше сложности задачи факторизации .

Покажем, что в случае n=pq (p,q – простые числа, p q) задачи нахождения функции Эйлера и факторизации эквивалентны. (то есть в случае, когда n – модуль RSA).

Учтем, что φ(n) = (p – 1)(q – 1). Тогда имеем систему

.

Зная n и φ(n), находим p и q из системы, приведенной выше, следующим образом:

Первое уравнение системы является квадратным уравнением относительно q,

q = , где Dq = [n– φ(n)+1]2 – 4n.

Подставляя полученное q во второе уравнение системы, находим p.

Видим, что при нахождении чисел p, q по известным n, φ(n) применяются только «дешевые» в смысле времени операции – сложение, деление на 2. Только при вычислении дискриминанта приходится применять возведение в степень, а при вычислении q – извлечение квадратного корня. Однако эти операции производятся однократно, поэтому временные затраты не столь существенны.

Итак, для модуля RSA задачи нахождения функции Эйлера и факторизации равносложны.

Формулировка теоремы Эйлера для RSA:

n = pq; pq; p, q – простые числа a выполняется akφ(n)+1a (mod n).

(на самом деле n может быть просто свободно от квадратов, то есть произведением произвольного количества различных простых чисел)

Доказательство:

Возможны два случая:

  1. (a, n) = 1 по теореме Эйлера aφ(n) ≡ 1 (mod n)

akφ(n)+1 = 1k aa (mod n).

  1. (a, n) ≠ 1, n не делит a в силу основного свойства простых чисел, либо p\ a, либо q \ a.

Не нарушая общности, предположим, что p\a, q не делит a.

Тогда по теореме Ферма, akφ(n)+1a(mod p),

qq–1≡1 (mod q) akφ(n)+1≡1k(p–1)·aa (mod q).

Итак, akφ(n)+1a (mod p), akφ(n)+1a (mod q). Отсюда по св-ву сравнений №12, akφ(n)+1a(mod НОК(p,q)). В силу простоты p и q, НОК(p,q)=pq=n, значит

akφ(n)+1a (mod n).

  1. n\a a≡0(mod n) akφ(n)+1≡0≡a(mod n).

Примечание:

Если вместо φ(n) в теореме Эйлера для RSA взять НОК(p–1, q–1), теорема все равно будет верна.

Применение теоремы Эйлера в RSA:

Напомним, что криптосистема RSA является системой с открытым ключом. В качестве параметров системы выбираются различные большие простые числа p и q, вычисляется n=pq, φ(n)=(p1)(q–1), выбирается число e: 2<e<n, (e, φ(n))=1 и вычисляется d=e-1(mod φ(n)). В качестве открытого ключа берется пара (n, e), в качестве закрытого, хранимого в секрете, четверка (p, q, φ(n), d).

Для того, чтобы зашифровать открытый текст x, абонент, пользуясь открытым ключом, вычисляет зашифрованный текст y по следующей формуле:

y = xe mod n.

Для того, чтобы осуществить расшифрование, владелец секретного ключа вычисляет

x = yd mod n.

В результате такого расшифрования действительно получится открытый текст, поскольку yd mod n=xed mod n=xed mod φ(n)mod n =x1 mod n=x.

Без знания простых сомножителей p и q сложно вычислить значение функции Эйлера φ(n), а значит, и степень d, в которую следует возводить зашифрованный текст, чтобы получить открытый.

Более того, знание простых сомножителей p и q может значительно облегчить процедуру возведения шифрованного текста y в степень d. Действительно, пользуясь теоремой Эйлера для RSA, можем понизить степень d. Разделим d на φ(n) с остатком:

d=kφ(n)+r

x=yd mod n= ykφ(n)+r mod n= yr mod n.

Еще более можно понизить степень, используя НОК(p–1,q–1)= вместо φ(n).

Пример:

n=19∙23=, φ(n)=18∙22=396, d=439.

НОК(18,22)=18∙22/2=198.

d mod φ(n)=43. d mod НОК(p–1,q–1)=43.

Число d=439 в двоичном представлении есть 110110111. Поэтому возведение в степень d c применением дихтономического алгоритма (см. гл.2) требует 8 возведений в квадрат и 6 умножений чисел.

Число 43 в двоичном представлении есть 101011. Возведение в степень 43 требует 5 возведений в квадрат и 3 умножения чисел. Кроме того, для вычисления φ(n) требуется 1 операция умножения.

Таким образом, для данного примера экономия времени составляет 2 сложные операции.

В случае больших простых делителей числа n экономия оказывается более существенной.

§4. Сравнения с одним неизвестным

Будем рассматривать сравнения вида a0xn + a1xn-1 + … + an≡ 0 (mod m) (*).

Если a0 не делится на m, то n называется степенью сравнения.

Решить сравнение – значит найти все x, ему удовлетворяющие. Два сравнения, которые удовлетворяют одни и те же значения x, называются равносильными.

Если сравнению (*) удовлетворяет какое-то x=x1, то ему же будут удовлетворять все числа, сравнимые с x1 по модулю m: xx1(mod m). Весь класс чисел, сравнимых с x1 по модулю m считается за одно решение. Таким образом, (*) будет иметь столько решений, сколько вычетов из полной системы ему удовлетворяет.

Пример:

x5+x+1=0 (mod 7) удовлетворяют x ≡ 2 (mod 7) и x ≡ 4 (mod 7) – 2 решения.

4.1. Сравнения первой степени.

Любое сравнение первой степени можно привести к виду axb (mod m). Рассмотрим случай, когда (a, m)=1. Согласно утверждению 2 пункта 3 §3, когда x пробегает полную систему вычетов по модулю m, ax тоже пробегает полную систему вычетов по по модулю m. Следовательно, при одном и только одном значении x из полной системы вычетов, ax будет сравнимо с b, т.е. при (a, m)=1 сравнение имеет ровно 1 решение.

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее