Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 2

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 2 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 22019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(1) m\a, b\m b\a.

Доказательство:

m\a a=ma1;

b\m m=bm1 a=bm1a1. Обозначив b1=a1m1, получим a=bb1, причем b\a.

(2) Если в равенстве вида k+l++n=p+q++s относительно всех членов кроме одного известно, что они кратны b, то и один оставшийся член тоже кратен b.

Доказательство:

Не нарушая общности, предположим, что таким членом (относительно кратности которого числу b ничего не известно) является k.

Тогда l1, …, n1, p1, q1, …, s1: l=bl1,…, n=bn1, p=bp1, q=bq1, …, s=bs1.

Тогда k=p+q++s–l––n=bp1+bq1++bs1–bl1–bn1=b(p1+q1++s1–l1–n1)

Обозначим k1= p1+q1++s1l1n1. Очевидно, k1 – целое число, причем k=bk1 Тогда, по определению делимости, b\k.

Кроме того, очевидны следующие свойства:

1) a\0, 1\a, a\a.

2) a\b, b\a ab.

3) a\b, a\c a\(bx+cy).

(Доказательство св-ва 3: b=ab1, c=ac1 bx+cy=ab1x+ac1y=a(b1x+c1y))

Теорема деления (теорема о делении с остатком)

единственная пара чисел 0 ≤ r < b: a=bq+r *

Доказательство:

Возьмем q: bqa, b(q+1)>a. Такое целое q, очевидно, существует r=abq является целым положительным числом как разность двух целых чисел, первое из которых больше второго. Причем выполняется . Построением такого r доказано существование разложения (*).

Теперь докажем единственность разложения (*): предположим, что кроме построенного выше, имеется еще одно разложение числа a:

a=bq1+r1, 0≤r1<b.

Вычтем полученное равенство из равенства (*) почленно. Получим

0=b(qq1)+(rr1). **

Поскольку b\0, b\b(qq1), то по теореме 2, b\(rr1).

С другой стороны, 0≤r<b, 0≤r1<b |rr1|<b. Отсюда и из того, что b\(rr1), следует, что rr1=0, и тогда r=r1. Подставляя полученное равенство в (**), получаем 0=b(qq1).

Но по условию теоремы, b≠0 , тогда qq1=0 q=q1.

Таким образом, оба построенных разложения числа a совпадают, а значит разложение (*) единственно.

В разложении (*) число q называются неполным частным, rостатком от деления a на b.

1.2. Наибольший общий делитель.

Далее будем рассматривать лишь положительные делители чисел.

Общим делителем чисел a1, a2,…,an называется число d: d\ai .

Наибольший из всех общих делителей чисел a1, a2,…,an называется их наибольшим общим делителем (НОД) и обозначается НОД(a1, a2,…,an) или (a1, a2,…,an).

Если (a1, a2,…,an)=1, то числа a1, a2,…,an называются взаимно простыми.

Если (ai,aj)=1 , ij , то числа a1, a2,…,an называются попарно простыми.

Утверждение

Если числа a1, a2,…,an – попарно простые, то они взаимно простые. (Очевидно.)

Теорема 1

Если b\a совокупность общих делителей a и b совпадает с совокупностью делителей b. В частности, (a,b)=b.

Доказательство:

b\a a=ba1, тогда d: d\b справедливо d\a (т.е. любой делитель b является также делителем a).

Если l\a, но l не делит b, то l не является общим делителем a и b.

То есть совокупность общих делителей a и b совпадает с совокупностью делителей b. А поскольку наибольший делитель b есть b, и b\a , то (a,b)=b.

Теорема 2

Если a=bq+c, то совокупность общих делителей a и b совпадает с совокупностью общих делителей b и c.

В частности, (a,b)=(b,c)

Доказательство:

Пусть m\a, m\b m\c (в силу a=bq+c и теоремы 2 п.1), а значит m – общий делитель b и c.

Пусть l\b, l\c l\a (в силу a=bq+c и теоремы 2 п.1), а значит l - общий делитель a и b.

Получили совпадение совокупности общих делителей a и b и общих делителей b и c.

Пусть теперь d=(a,b) d\a, d\b, а значит, по доказанному выше, d\c. В силу совпадения совокупностей общих делителей и того, что d – наименьший изо всех делителей a и b, не может существовать d1: d1>d, d1\b, d1\c. Поэтому d=(b,c) (a,b)= (b,c).

Алгоритм Евклида (отыскания НОД 2-х чисел)

Пусть a>b. Тогда в силу теоремы делимости находим ряд равенств:

a=bq1+r1, 0<r1<b

b=r1q2+r2, 0<r2<r1

r1=r2q3+r3, 0<r3<r2

...…………………

rn-2=rn-1qn+rn, 0<rn<rn-1

rn1=rnqn+1.

Получение последнего равенства (то есть равенства с разложением без остатка) неизбежно, т.к. ряд b, r1, r2, …. – ряд убывающих целых чисел, который не может содержать более b положительных чисел, а значит рано или поздно в этом ряду возникнет «0».

Видим, что общие делители a и b, b и r1, r1 и r2,..., rn–1 и rn совпадают с делителями числа rn (a,b)=(b,r1)=(r1,r2)=…=(rn-1,rn)= rn.

Таким образом, (a,b)=rn.

Вышеизложенная идея нахождения НОД может быть реализована в виде алгоритма. Ниже приведены несколько вариантов реализации алгоритма Евклида.

Реализация алгоритма Евклида (вариант алгоритма с вычитанием)

Вход: a, b>0.

  1. Если a>b Шаг 3

если a<b Шаг 2

если a=b Шаг 5 (выход)

  1. Меняем местами a и b.

  2. a:=ab

  3. Возвращаемся на Шаг 1.

5. Выход: a – НОД

Ниже приведен пример использования этой реализации алгоритма.

Пример

a=603, b=108

Преобразования алгоритма записаны в таблицу, верхняя строка которой содержит значение переменной a, нижняя – содержимое переменной b. Каждый столбец таблице соответствует состоянию процесса на отдельном шаге.

a

603

495

387

279

171

63

108

45

63

18

45

27

9

18

9

b

108

108

108

108

108

108

63

63

45

45

18

18

18

9

9

Ответ: НОД (603,108)=9.

Реализация алгоритма Евклида (вариант алгоритма с делением с остатком)

Вход: a, b >0.

1. Находим разложение a=bq+r, 0≤r<b

2. если r=0 Шаг 5 (выход)

3. a:=b; b:=r.

4. Возвращаемся на Шаг 1

5. Выход: b – НОД.

Пример

a=603, b=108

a

603

108

63

45

27

18

b

108

63

45

27

18

9

603=5·108+63

108=1·63+45

63=1∙45+27

45=1∙27+18

27=1∙18+9

18=2∙9+0

Ответ: НОД (603,108)=9.

Бинарный алгоритм Евклида

Этот вариант создан специально для реализации на ЭВМ. В нем учитывается, что операция деления на число 2 или на любую степень двойки является весьма быстрой и простой операцией (в двоичной системе счисления операция деления на 2 есть всего лишь битовый сдвиг вправо).

Учтем, что (2ka,2sb)=2min(k,s)(a,b).

Алгоритм:

Вход: a, b>0.

  1. Представим a и b в виде: ; , где a1, b1 – нечетные числа.

k:=min(k1,k2).

  1. Если a1>b1 Шаг 4

a1< b1 Шаг 3

a1= b1 Шаг 6

  1. Меняем местами a1 и b1.

  2. c:=a1b1=2sc1 (c1 - нечетное число)

(Заметим, что с обязательно будет четным, а значит )

5. a1:= b1 , b1:=c1 . Возвращаемся на Шаг 1.

6. Выход: (a,b)=2ka1 .

Пример

a=603, b=108

a1

603

27

9

b1

27

9

9

c1

9

9

1. a1=603, k1=0; b=108=4∙27=22∙27 k2=2, b1=27, k=0

2. a1=603> b1=27 Ш4

4. c=603-27=56=64∙9, c1=9

5. a1=27; b1=9 Ш1

1. a1=27; b1=9

2. a1> b1 Ш4

4. c=a1b1=18=2∙9, c1=9

5. a1=9, b1=9

1. a1=9, b1=9, k=0

2. a1= b1 Ш6

6. (a,b) = 2º∙9=9

Для НОД справедливы следующие свойства:

1) (am,bm)=m(a,b)

Доказательство:

Доказательство строится, умножая почленно соотношения алгоритма Евклида на m.

2) dобщий делитель чисел a и b

(в частности, ).

Доказательство:

Учитывая, что и – целые числа, из свойства НОД №1 получаем соотношение , что и требовалось.

3) (a,b)=1 (ac,b)=(c,b)

Доказательство:

a, b, c выполняется (ac,b)\ac, (ac,b)\b (ac,b)\bc (ac,b)\(ac,bc).

По условию теоремы, в силу взаимной простоты a и b (ac,bc)=c, то есть получили (ac,b)\с.

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее