Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 11

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 11 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 112019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Доказательство:

Согласно доказанной в п.1. теореме о числе кавдратичных вычетов, |Q(p)|=| |=(p—1)/2, |Q(q)|=| |=(q—1)/2. В силу взаимной простоты чисел p и q, среди чисел 0,1, 2, … , n—1 окажется ровно |Q(p)|·|Q(q)|=φ(n)/4 квадратов и | |·| |=φ(n)/4 псевдоквадратов.

Задача различения квадратов и псевдоквадратов не сложнее задачи факторизации, так как, зная разложение n на простые сомножители, сможем вычислить и с помощью полиномиального алгоритма.

На момент написания этого пособия не имелось никакой информации о том, проще ли задача различения квадратов и псевдоквадратов, чем задача факторизации.

5.9. Числа Блюма.

Числа вида n=pq, p, q – различные простые числа, причем p≡3(mod 4), q≡3(mod 4), называются числами Блюма.

Пусть n – число Блюма, и a Q(n). Тогда сравнение x2a(mod n) имеет четыре решения, которые можно представить в виде системы: . Заметим, что . Аналогично получим . То есть один корень из пары b,b является, а другой не является квадратом по модулю p, один корень из пары c, c является, а другой не является квадратом по модулю q.

Таким образом, если n – число Блюма, то один из четырех корней сравнения x2a(mod n) является квадратом и один – псевдоквадратом по модулю n. Корень, являющийся квадратом по модулю n, называется главным корнем.

Итак, мы только что показали важное свойство квадратичных сравнений по модулю чисел Блюма: извлекая квадратный корень по модулю Блюма, получаем 4 решения, из одного из которых в свою очередь можно извлечь квадратный корень, и т. д. На этом важном свойстве построено несколько криптосистем.

BBS-генератор (генератор Blum-Blum-Shub):

Параметры генератора: n=pq, p, q – различные простые числа, причем p≡3(mod 4), q≡3(mod 4) (то есть n – число Блюма).

Начальное состояние (ключ генератора): s0 Q(n)

Генерируемая последовательность: BBS(s0)=z1, z2, …, zm, где zi=si mod 2, i=1,2,…,m, si+1=si2 mod n, i ≥ 0.

Теорема (об условной стойкости BBS-генератора)

Если существует алгоритм, вычисляющий z0=s0 mod 2 по BBS(s0) за полиномиальное время с вероятностью не меньше ½+ε, ε>0, то для любого δ, ½<δ<1, существует вероятностный алгоритм, который различает квадраты и псевдоквадраты по модулю n за полиномиальное время с вероятностью не меньшей δ.

Другими словами, если проблема распознавания квадратов и псевдоквадратов по модулю Блюма не решается за полиномиальное время, то BBS-генератор криптографически стоек. Проблему различения квадратов и псевдоквадратов по модулю Блюма действительно считают вычислительно сложной, поскольку в настоящее время она не решается эффективно без факторизации модуля, что служит основанием для признания BBS-генератора стойким.

Криптосистема Блюма-Гольдвассер (Blum-Goldwasser).

Пусть x1, x2, … , xm – последовательность бит открытого текста. В качестве параметров криптосистемы выбираем n=pq – число Блюма, s0 – случайное число из Zn, взаимно простое с n.

В качестве открытого ключа для шифрования выступает n, в качестве секретного ключа для расшифрования – пара (p, q).

Для того, чтобы зашифровать открытый текст, обладатель открытого ключа выбирает s0. На основе BBS-генератора по ключу s0 получает последовательность квадратов s1, s2, … , sm, по которой получает последовательность младших бит z1, z2, …, zm. Путем гаммирования с этой последовательностью битов открытого текста получает шифрованный текст yi=xi zi, i=1,2,…,m. Шифрограмма, которая пересылается обладателю секретного ключа, есть (y1,y2,…,ym, sm+1). После формирования шифрограммы последовательность si, i=0,1,…,m уничтожается, и при следующем сеансе связи отправитель выбирает новое s0.

Получатель шифрограммы восстанавливает по sm+1 последовательность главных корней sm, … , s1 и последовательность их младших бит z1, z2, …, zm, а затем расшифровывает шифрограмму: xi=yi zi , i=1,2,…,m.

Криптосистема Гольдвассер-Микали.

Параметры системы: n=pq – число Блюма, z – случайное число из .

Открытый ключ для шифрования – пара (n,z), секретный ключ для расшифрования – пара (p,q).

Пусть x1, x2, … , xm – последовательность бит открытого текста. Бит шифрованного текста вычисляем по биту открытого текста как , где ai – случайное число из Zn.

В итоге шифрования получается последовательность не бит, а чисел, причем yi является псевдоквадратом по модулю n, если xi =1, и квадратом, если xi=0.

Адресату, обладающему секретным ключом, отправляется последовательность чисел шифртекста y1, y2, …, ym , после чего параметр z может быть уничтожен.

Адресат осуществляет расшифрование следующим образом:

, i=1,2,…,m.

Условная стойкость криптосистемы Гольдвассер-Микали основана на предположительной сложности алгоритма распознавания квадратов и псевдоквадратов по модулю Блюма без знания разложения модуля на простые сомножители.

Данная криптосистема имеет существенный недостаток – размер шифртекста значительно превышает размер открытого текста, ведь каждый бит последнего при шифровании преобразуется в число такой же размерности, как n.

§6. Первообразные корни и индексы. Порождающий элемент и дискретный логарифм.

В этом параграфе рассмотрены теоретико-числовые основы, ведущие к задачам дискретного логарифмирования над конечным полем, а также приведены некоторые приложения теории конечных групп к таким вопросам как тесты на простоту и построение простых чисел.

6.1. Основные понятия и теоремы.

При (a,m)=1 существуют положительные γ с условием aγ≡1(mod m). Наименьшее из таких γ называется показатель, которому a принадлежит по модулю m.

В том, что такие γ существуют, можно убедиться, вспомнив теорему Эйлера (γ=φ(m)).

Возвращаясь к основам общей алгебры, в частности, к теории конечных групп, можно сказать, что показатель, которому которому a принадлежит по модулю m есть то же самое, что порядок элемента a в конечной мультипликативной группе <Um, · mod m>. Далее будем обозначать его Om(a).

Поскольку дальнейшие построения будут тесно связаны с группой <Um, · mod m>, то на протяжении текущего параграфа для краткости будем обозначать эту группу как Um.

Докажем несколько важных теорем, описывающих свойства Om(a):

Теорема 1.

Числа 1=a0, a1, a2, … , несравнимы между собой по модулю m.

Доказательство:

Действительно, из того, что alak(mod m), 0 ≤ k < l < Om(a) следовало бы, что alk≡1(mod m), 0 < kl < Om(a), что противоречит определению Om(a).

Теорема 2.

Пусть δ= Om(a). Тогда aγaβ (mod m) γ≡β(mod δ).

Доказательство:

Из теоремы 1 следует, что если aγaβ (mod m) , то γ≡β(mod δ).

Пусть теперь γ≡β(mod δ) Тогда, по теореме делимости, найдутся такие числа q, w, r: 0 ≤ r < δ, что γ=δ·q+r, β=δ·w+r. Тогда из того, что aδ≡1(mod m) следует, что

aγaδq+r≡(aq)δarar(mod m)

aβaδw+r≡(aw)δarar(mod m)

Что и требовалось доказать.

Теорема 3.

Om(a)\φ(m).

Доказательство:

Следует из Теоремы 2 при β=0 и из теоремы Эйлера (aφ(m)≡1(mod m)).

Последняя теорема также может быть доказана как следствие из теоремы Лагранжа (порядок любого элемента в группе делит порядок группы) применительно к группе Um.

Числа, принадлежащие показателю φ(m) (если они существуют), называются первообразными корнями по модулю m.

Если a – первообразный корень по модулю m, то согласно Теореме 1, числа 1=a0, a1, a2, … , aφ(m)-1 несравнимы между собой по модулю m, а раз их φ(m) штук, то они образуют приведенную систему вычетов по модулю m. Тогда a есть ни что иное как порождающий элемент группы Um.

Утверждение

Если существует первообразный корень по модулю m, то мультипликативная группа Um является циклической группой.

Доказательство очевидным образом следует из вышесказанного.

Пример 1.

Рассмотрим группу U11=<{1,2,3,4,5,6,7,8,9,10},· mod m>. Порядок этой группы равен φ(11)=10. Найдем порядки всех элементов в этой группе и отыщем порождающий элемент этой группы, если он существует. Для краткости вместо ab mod 11 будем писать просто ab.

1: 10=1, 11=1. O11(1)=1.

2: 20=1, 21=2, 22=4, 23=8, 24=5, 25=10, 26=9, 27=7, 28=3, 29=6, 210=1. O11(2)=10.

3: 30=1, 31=3, 32=9, 33=5, 34=4, 35=1. O11(3)=5.

4: 40=1, 41=4, 42=5, 43=9, 44=3, 45=1. O11(4)=5.

5: 50=1, 51=5, 52=3, 53=4, 54=9, 55=1. O11(5)=5.

6: 60=1, 61=6, 62=3, 63=7, 64=9, 65=10, 66=5, 67=8, 68=4, 69=2, 610=1. O11(6)=10.

7: 70=1, 71=7, 72=5, 73=2, 74=3, 75=10, 76=4, 77=6, 78=9, 79=8, 710=1. O11(7)=10.

8: 80=1, 81=8, 82=9, 83=6, 84=4, 85=10, 86=3, 87=2, 88=5, 89=7, 810=1. O11(8)=10.

9: 90=1, 91=9, 92=4, 93=3, 94=5, 95=1. O11(9)=5.

10: 100=1, 101=10, 102=1. O11(10)=2.

Действительно, порядки всех элементов делят порядок группы. При этом в группе U11 нашлись порождающие элементы, причем не один, а четыре. Это 2, 6, 7 и 8. Однако не во всех группах Um существуют порождающие элементы, убедимся в этом на следующем примере:

Пример 2.

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее