DOCX (1123295), страница 26

Файл №1123295 DOCX (Ещё одни билеты готовые) 26 страницаDOCX (1123295) страница 262019-05-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 26)

Кислородный эффект в радиобиологии и его механизмы.

Кислородный эффект - явление усиления поражающего действия ионизирующего излучения в присутствии кислорода в момент облучения. То есть кислород является радиосенсибилизатором. Однако на практике часто приходится обсуждать не сенсибилизирующие свойства кислорода, а радиозащитное действие гипоксии. Для количественной оценки кислородного эффекта используют величину ФИД (фактор изменения дозы), который в данном случае называют также коэффициентом кислородного усиления (ККУ). Кривая гибели животных после облучения в условиях гипоксии сдвигается в область более высоких доз как показано. (17.2.2)

При облучении животных заметное снижение радиочувствительности, по сравнению с нормальным атмосферным воздухом, наблюдается примерно при 10%-ном содержании кислорода и ниже. Длительность кислородного эффекта у животных невелика, т.е. защитное действие гипоксии снижается при длительном нахождении в гипоксических условиях. Часто для определения ККУ используется соотношение доз D0 в условиях гипоксии (или аноксии) к D0 в нормальных условиях: (17.2.3) .

Кривые выживаемости клеток китайского хомячка, облученных на воздухе и в азоте. Как видно из рисунка, для снижения фракции выживших клеток до 0.01 (1%) от исходной при облучении на воздухе потребовалась доза 8.9 Гр, а при облучении в аноксии (отсутствие кислорода) – 25 Гр. Величина D0 равна 1.5 и 4.5 Гр, соответственно. Таким образом, кислород повысил радиочувствительность клеток в 2.8 раза (25/8.9 = 2.8), т.е. он сенсибилизировал клетки с ФИД = 2.8. (17.2.4)

Наиболее четко кислородный эффект наблюдается при облучении редкоионизирующими излучениями, т.е. когда линейная плотность ионизации (ЛПИ) низкая. С увеличением ЛПИ кислородный эффект быстро уменьшается и полностью отсутствует при α‑облучении, характеризующимся высокой ЛПИ. Представлены различные варианты проявления кислородного эффекта в зависимости от применяемого вида ионизирующего излучения. Как видно из рисунка, самая высокая величина ККУ = 2.5 наблюдается при действии рентгеновского излучения. (17.2.5)

А – рентгеновское излучение, Б – нейтронное излучение (15 МэВ), В – a-излучение

Кислородный эффект был обнаружен не только на клеточном и организменном уровне, но и в экспериментах с биологическими макромошт лекулами. Основные результаты по кислородному эффекту были получены главным образом с ферментами и нуклеиновыми кислотами, причём наиболее важные и однозначные данные были получены по инактивации ферментов. Кислородный эффект почти всегда наблюдается при облучении сухих ферментов. Результаты по инактивации РНК-азы при g-облучении в вакууме и присутствии кислорода. В этих экспериментах ККУ = 2.1. (17.2.6)

На клеточном уровне зависимость кислородного эффекта от концентрации кислорода подробна была исследована Греем - эксперименты проводились на дрожжах, бактериях и клетках млекопитающих в культуре. Графическое изображение этой зависимости: по оси ординат откладывается ККУ, по оси абсцисс – парциальное давление кислорода. В воздухе ККУ равен примерно 3 (т.е. радиочувствительность уже максимальна) и не возрастает при повышении концентрации кислорода. При снижении концентрации кислорода со 159 мм рт. ст. (воздух) до 30 мм рт. ст. ККУ снижается очень незначительно. А вот в диапазоне от 20 мм рт. ст. до 0 мм рт. ст. ККУ снижается очень резко. При парциальном давлении кислорода 3 мм рт. ст. ККУ равен примерно 2. (17.2.8)

В 1956 г. Альпер и Говард-Фландерс высказали гипотезу о механизме кислородного эффекта, включающую несколько положений:

а) в результате облучения мишени образуется ее активированное состояние;

б) это активированное состояние мишени существует в течение очень короткого времени (несколько миллисекунд, не превышает 20 мс), а затем мишень возвращается в стабильное состояние (т.е. восстанавливается);

в) в активированном состоянии мишень является очень реакционноспособной по отношению к кислороду;

г) если во время облучения в среде присутствует кислород, то мишень в активированном состоянии взаимодействует с ним с образованием перекиси (точнее — гидроперекиси), т.е. происходит пероксидация мишени,

д) пероксидация мишени приводит к потере ее функциональных свойств (например, ферментативной активности и т.д.) и затрудняет ее репарацию или вовсе делает ее невозможной. Повреждение становится нерепарируемым.

Иными словами, кислород закрепляет («фиксирует») повреждение мишени, в связи с чем описанную гипотезу о механизме кислородного эффекта называют также «гипотезой кислородной фиксации».

Кислородный эффект не наблюдается в разбавленных водных растворах макромолекул или даже наблюдается обратный кислородный эффект. В разбавленных водных растворах преобладает непрямое действие радиации на растворенные макромолекулы, т.е. макромолекулы повреждаются, в основном, радикалами воды, образующимися при ее радиолизе. В водных растворах О2 взаимодействует, главным образом, с радикалами водорода (Н) и гидратированными электронами (е-aq), а не с радикалами макромолекул.

При этом возможны следующие варианты:

а) если радикалы водорода Н и гидратированные электроны е-aq вносят наибольший вклад в поражение макромолекулы, то их перехват кислородом снизит радиационный эффект, оказанный ими на макромолекулы — защитный эффект кислорода, т.н. обратный кислородный эффект;

б) если макромолекулы повреждаются главным образом гидроксильным радикалом ОН, то кислород, перехватывая радикалы водорода Н, уменьшает рекомбинацию Н + ОН → Н2О и, таким образом, увеличивает концентрацию ОН и усиливает радиационный эффект.

Знание причин возрастания устойчивости клеток в условиях гипоксии имеет огромное значение при радиотерапии злокачественных образовании. Известно, что цель радиотерапии опухолей — убить опухолевые клетки и как можно меньше повредить нормальные ткани, окружающие опухоль. Однако в обычных условиях применению облучения для удаления опухоли препятствует тот факт, что опухолевая ткань является более устойчивой, чем нормальная ткань. Это связано с тем, что обычно в нормальных тканях парциальное напряжение кислорода (рО2) составляет 40‑60 мм рт.ст. В опухолях же, которые, как известно, снабжаются кровью значительно хуже, чем нормальные ткани, напряжение кислорода значительно ниже и поэтому и радиоустойчивость опухолей значительно выше, чем у нормальных тканей.

Однако в опухолевой ткани напряжение кислорода находится в той области, где даже при небольшом увеличении концентрации кислорода радиочувствительность может существенно повыситься : (17.2.11)

Именно этот эффект используется при радиотерапии опухолей. При повышении содержания О2 во вдыхаемом воздухе происходит увеличение концентрации О2 как в нормальных тканях, так и в опухоли. Однако повышение содержания кислорода практически не вызывает увеличение радиочувствительности нормальных тканей, но приводит к значительному увеличению радиочувствительности опухоли. Для этой цели применяют гипербарическую оксигенацию (вдыхание чистого кислорода под давлением 2‑3 атм.). Однако, надо отметить, что этот метод далеко не всегда повышает рО2 в опухолевой ткани. Другим подходом практического применения кислородного эффекта в радиотерапии опухолей является использование феномена реоксигенации опухолевых клеток. Ван Путтен и Каллман показали, что популяция опухолевых клеток состоит из гипоксических и аэрированных, т.е. негипоксических клеток. Обычно всего лишь 15% клеток являются гипоксическими. При действии облучения на такую популяцию гибнут в первую очередь аэрированные клетки, т.к. они более радиочувствительные. Однако в экспериментах было обнаружено, что через определённый интервал времени после облучения популяция опухолевых клеток восстанавливает соотношение гипоксических и оксигенированных клеток на первоначальном уровне, т.е опять доля гипоксических клеток снижается до 15%. Таким образом, происходит реоксигенация клеток и появление радиочувствительной аэрированной фракции клеток, что позволяет опять эффективно применить ионизирующее излучение для их уничтожения.

Надо отметить, что определяющим фактором для успешного применения ионизирующего излучения против опухолевых клеток является подбор того временного интервала, который необходим для реоксигенации клеток, т.е. выбрать достаточный промежуток времени между фракциями облучения. Показано, что время полной реоксигенации для различных видов опухолевых клеток может существенно различаться: для одних клеток – оно может быть около 6 часов и меньше (быстрая реоксигенация), а для других – 1-3 суток и более (медленная реоксигенация). Представлена зависимость процесса реоксигенации клеток саркомы у мышей от времени после облучения в дозе 10 Гр. Как видно, сразу после облучения в дозе 10 Гр популяция клеток состоит только из гипоксических клеток, однако через 6 часов в результате процесса реоксигенации доля гипоксических клеток в популяции значительно уменьшается и выходит на стационарный уровень. Таким образом, для данного вида опухолевых клеток повторное облучение можно проводить уже через 6 часов. Клиническими исследованиями было доказано, что у большинства опухолей процесс реоксигенации длится 1-2 суток, что и определяет график проведения фракционированного облучения. Еще представлена схема проведения фракционированного облучения опухолевых клеток с учётом процесса реоксигенации. (17.2.12) (17.2.13)

Как видно из рисунка, ионизирующее излучение вызывает гибель аэрированных клеток, так как они более радиочувствительные, после чего в популяции остаются только устойчивые гипоксические клетки. Однако после процесса реоксигенации в опухоли восстанавливается первоначальное соотношение между аэрированными и гипоксическими клетками, что позволяет опять эффективно применить облучение. И так несколько раз до полного уничтожения опухоли. Доказано, что радиотерапия неэффективна в отношении тех опухолей, в которых процесс реоксигенации не наблюдается.

Билет 30 ?

Пассивный и активный транспорт веществ через мембрану. Проницаемость

мембраны для воды.

Т.к. мембрана представляет из себя липидный бислой, проницаемость для полярных частиц отсутствует. Важно отметить, что клетка обладает избирательной проницаемостью.Поэтому, для транспорта воды необходимы поры, а для транспорта ионов--каналы и переносчики. Вообще, перенос через мембрану осуществляется тремя способами: диффузия, облегченная диффузии и активный транспорт. Диффузия и пассивный транспорт идут по градиенту концентрации и без затраты энергии. При этом, облегченную диффузии клетка при необходимости может остановить,закрыв канал. Или, наоборот, начать пропускать. Все это дает возможность поддерживать необходимое соотношение ионов внутри и вне мембраны.

Пассивный транспорт – транспорт без затрат АТФ, через каналы или диффузиозно.

Он происходит за счет двух движущих сил: градиент концентраций и потенциалов.

Представим себе корыто, разделенное полупроницаемой мембраной (ПМ), через которую проходят катионы, но не проходят анионы. Левую половину назовем in, правую – out. Направим ось x слева направо. Нальем в in электролит, пройдет электролитическая диссоциация, и появятся катионы и анионы. Катионы потекут вправо по градиенту (вдоль оси x). В какой-то момент установится динамическое равновесие: вправо катионы будет тянуть сила градиента (осмос), влево – электростатическая сила (анионы притягивают).

Напишем, чем равен электрохимический потенциал in и out (он пишется С ЧЕРТОЙ. Хз как ее вставить). µin= µ0+RTlnCin+zFφin, аналогично для out.

Характеристики

Тип файла
Документ
Размер
11,54 Mb
Предмет
Высшее учебное заведение

Список файлов вопросов/заданий

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее