Главная » Просмотр файлов » Д.С. Ватолин - Алгоритмы сжатия изображений

Д.С. Ватолин - Алгоритмы сжатия изображений (1119068), страница 3

Файл №1119068 Д.С. Ватолин - Алгоритмы сжатия изображений (Д.С. Ватолин - Алгоритмы сжатия изображений) 3 страницаД.С. Ватолин - Алгоритмы сжатия изображений (1119068) страница 32019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

InitTable();

CompressedFile.WriteCode(СlearCode);

CurStr=пустая строка;

while(не ImageFile.EOF()){ //Пока не конец файла

C=ImageFile.ReadNextByte();

if(CurStr+C есть в таблице)

CurStr=CurStr+С; //Приклеить символ к строке

else {

code=CodeForString(CurStr);//code-не байт!

CompressedFile.WriteCode(code);

AddStringToTable (CurStr+С);

CurStr=С; // Строка из одного символа

}

}

code=CodeForString(CurStr);

CompressedFile.WriteCode(code);

CompressedFile.WriteCode(CodeEndOfInformation);

Как говорилось выше, функция InitTable() инициализирует таблицу строк так, чтобы она содержала все возможные строки, состоящие из одного символа. Например, если мы сжимаем байтовые данные, то таких строк в таблице будет 256 (“0”, “1”, ... , “255”). Для кода очистки (ClearCode) и кода конца информации (CodeEndOfInformation) зарезервированы значения 256 и 257. В рассматриваемом варианте алгоритма используется 12-битный код и, соответственно, под коды для строк нам остаются значения от 258 до 4095. Добавляемые строки записываются в таблицу последовательно, при этом индекс строки в таблице становится ее кодом.

Функция ReadNextByte() читает символ из файла. Функция WriteCode() записывает код (не равный по размеру байту) в выходной файл. Функция AddStringToTable () добавляет новую строку в таблицу, приписывая ей код. Кроме того, в данной функции происходит обработка ситуации переполнения таблицы. В этом случае в поток записывается код предыдущей найденной строки и код очистки, после чего таблица очищается функцией InitTable(). Функция CodeForString() находит строку в таблице и выдает код этой строки.

Пример:

Пусть мы сжимаем последовательность 45, 55, 55, 151, 55, 55, 55. Тогда, согласно изложенному выше алгоритму, мы помести в выходной поток сначала код очистки <256>, потом добавим к изначально пустой строке “45” и проверим, есть ли строка “45” в таблице. Поскольку мы при инициализации занесли в таблицу все строки из одного символа, то строка “45” есть в таблице. Далее мы читаем следующий символ 55 из входного потока и проверяем, есть ли строка “45, 55” в таблице. Такой строки в таблице пока нет. Мы заносим в таблицу строку “45, 55” (с первым свободным кодом 258) и записываем в поток код <45>. Можно коротко представить архивацию так:

“45” — есть в таблице;

“45, 55” — нет. Добавляем в таблицу <258>“45, 55”. В поток: <45>;

“55, 55” — нет. В таблицу: <259>“55, 55”. В поток: <55>;

“55, 151” — нет. В таблицу: <260>“55, 151”. В поток: <55>;

“151, 55” — нет. В таблицу: <261>“151, 55”. В поток: <151>;

“55, 55” — есть в таблице;

“55, 55, 55” — нет. В таблицу: “55, 55, 55” <262>. В поток: <259>;

Последовательность кодов для данного примера, попадающих в выходной поток: <256>, <45>, <55>, <55>, <151>, <259>.

Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.

Мы знаем, что для каждого кода надо добавлять в таблицу строку, состоящую из уже присутствующей там строки и символа, в которого начинается следующая строка в потоке.

Алгоритм декомпрессии, осуществляющий эту операцию, выглядит следующим образом:

code=File.ReadCode();

while(code != СodeEndOfInformation){

if(code = СlearСode) {

InitTable();

code=File.ReadCode();

if(code = СodeEndOfInformation)

{закончить работу};

ImageFile.WriteString(StrFromTable(code));

old_code=code;

else {

if(InTable(code)) {

ImageFile.WriteString(FromTable(code));

AddStringToTable(StrFromTable(old_code)+

FirstChar(StrFromTable(code)));

old_code=code;

}

else {

OutString= StrFromTable(old_code)+

FirstChar(StrFromTable(old_code));

ImageFile.WriteString(OutString);

AddStringToTable(OutString);

old_code=code;

}

}

}

Здесь функция ReadCode() читает очередной код из декомпрессируемого файла. Функция InitTable() выполняет те же действия, что и при компрессии, т.е. очищает таблицу и заносит в нее все строки из одного символа. Функция FirstChar() выдает нам первый символ строки. Функция StrFromTable() выдает строку из таблицы по коду. Функция AddStringToTable() добавляет новую строку в таблицу (присваивая ей первый свободный код). Функция WriteString() записывает строку в файл.

Замечание 1. Как вы могли заметить, записываемые в поток коды постепенно возрастают. До тех пор, пока в таблице не появится, например, в первый раз код 512, все коды будут меньше 512. Кроме того, при компрессии и при декомпрессии коды в таблице добавляются при компрессии одного и того же символа, т.е. это происходит “синхронно”. Мы можем воспользоваться этим свойством алгоритма для того, чтобы повысить степень компрессии. Пока в таблицу не добавлен 512 символ, мы будем писать в выходной битовый поток коды из 9 бит, а сразу при добавлении 512 — коды из 10 бит. Соответственно декомпрессор также должен будет воспринимать все коды входного потока 9-битными до момента добавления в таблицу кода 512, после чего будет воспринимать все входные коды как 10-битные. Аналогично мы будем поступать при добавлении в таблицу кодов 1024 и 2048. Данный прием позволяет примерно на 15% поднять степень компрессии:

Замечание 2. При сжатии изображения нам важно обеспечить быстроту поиска строк в таблице. Мы можем воспользоваться тем, что каждая следующая подстрока на один символ длиннее предыдущей, кроме того, предыдущая строка уже была нами найдена в таблице. Следовательно, достаточно создать список ссылок на строки, начинающиеся с данной подстроки, как весь процесс поиска в таблице сведется к поиску в строках, содержащихся в списке для предыдущей строки. Понятно, что такая операция может быть проведена очень быстро.

Заметим, также, что реально нам достаточно хранить в таблице только пару <код предыдущей подстроки, добавленный символ>. Этой информации вполне достаточно для работы алгоритма. Таким образом, массив от 0 до 4095 с элементами <код предыдущей подстроки; добавленный символ; список ссылок на строки, начинающиеся с этой строки> решает поставленную задачу поиска, хотя и очень медленно.

На практике для хранения таблицы используется такой же быстрое как в случае списков, но более компактное по памяти решение — хэш-таблица. Таблица состоит из 8192 (213) элементов. Каждый элемент содержит <код предыдущей подстроки; добавленный символ; код этой строки>. Ключ для поиска длиной в 20 бит формируется с использованием двух первых элементов, хранимых в таблице как одно число (key). Младшие 12 бит этого числа отданы под код, а следующие 8 бит под значение символа.

В качестве хэш-функции при этом используется:

Index(key)= ((key >> 12) ^ key) & 8191;

Где >> — побитовый сдвиг вправо (key >> 12 — мы получаем значение символа), ^ — логическая операция побитового исключающего ИЛИ, & логическое побитовое И.

Таким образом, за считанное количество сравнений мы получаем искомый код или сообщение, что такого кода в таблице нет.

Подсчитаем лучший и худший коэффициенты компрессии для данного алгоритма. Лучший коэффициент, очевидно, будет получен для цепочки одинаковых байт большой длины (т.е. для 8-битного изображения, все точки которого имеют, для определенности, цвет 0). При этом в 258 строку таблицы мы запишем строку “0, 0”, в 259 — “0, 0, 0”, ... в 4095 — строку из 3809 (=4095-256) нулей. При этом в поток попадет (проверьте по алгоритму!) 3810 кодов, включая код очистки. Следовательно, посчитав сумму арифметической прогрессии от 1 до 3809 (т.е. длину сжатой цепочки) и поделив ее на 3810*12/8 (в поток записываются 12-битные коды), мы получим лучший коэффициент компрессии.

Упражнение: Вычислить точное значение лучшего коэффициента компрессии. Более сложное задание: вычислить тот же коэффициент с учетом замечания 1.

Худший коэффициент будет получен, если мы ни разу не встретим подстроку, которая уже есть в таблице (в ней не должно встретиться ни одной одинаковой пары символов).

Упражнение: Составить алгоритм генерации таких цепочек. Попробовать сжать полученный таким образом файл стандартными архиваторами (zip, arj, gz). Если вы получите сжатие, значит алгоритм генерации написан неправильно.

В случае, если мы постоянно будем встречать новую подстроку, мы запишем в выходной поток 3810 кодов, которым будет соответствовать строка из 3808 символов. Без учета замечания 1 это составит увеличение файла почти в 1.5 раза.

LZW реализован в форматах GIF и TIFF.

Характеристики алгоритма LZW:

Коэффициенты компрессии: Примерно 1000, 4, 5/7 (Лучший, средний, худший коэффициенты) Сжатие в 1000 раз достигается только на одноцветных изображениях размером кратным примерно 7 Мб (6.918...).

Класс изображений: Ориентирован LZW на 8-битные изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке.

Симметричность: Почти симметричен, при условии оптимальной реализации операции поиска строки в таблице.

Характерные особенности: Ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. LZW универсален — именно его варианты используются в обычных архиваторах.

Алгоритм Хаффмана

Классический алгоритм Хаффмана

Один из классических алгоритмов, известных с 60-х годов. Использует только частоту появления одинаковых байт в изображении. Сопоставляет символам входного потока, которые встречаются большее число раз, цепочку бит меньшей длины. И, напротив, встречающимся редко — цепочку большей длины. Для сбора статистики требует двух проходов по изображению.

Для начала введем несколько определений.

Определение. Пусть задан алфавит Y={a1, ..., ar}, состоящий из конечного числа букв. Конечную последовательность символов из Y

будем называть словом в алфавите Y, а число nдлиной слова A. Длина слова обозначается как l(A).

Пусть задан алфавит W, W={b1, ..., bq}. Через B обозначим слово в алфавите W и через S(W) — множество всех непустых слов в алфавите W.

Пусть S=S(Y) — множество всех непустых слов в алфавите Y, и S' — некоторое подмножество множества S. Пусть, также задано отображение F, которое каждому слову A, AÎS(Y), ставит в соответствие слово

B=F(A), BÎS(W).

Слово В будем назвать кодом сообщения A, а переход от слова A к его коду — кодированием.

Определение. Рассмотрим соответствие между буквами алфавита Y и некоторыми словами алфавита W:

a1B1,
a2B2,
. . .
arBr

Это соответствие называют схемой и обозначают через S. Оно определяет кодирование следующим образом: каждому слову из S'(W)=S(W) ставится в соответствие слово , называемое кодом слова A. Слова B1 ... Br называются элементарными кодами. Данный вид кодирования называют алфавитным кодированием.

Определение. Пусть слово В имеет вид

B=B'B"

Тогда слово B' называется началом или префиксом слова B, а B"концом слова B. При этом пустое слово L и само слово B считаются началами и концами слова B.

Определение. Схема S обладает свойством префикса, если для любых i и j (1£i, j£r, i¹j) слово Bi не является префиксом слова Bj.

Теорема 1. Если схема S обладает свойством префикса, по алфавитное кодирование будет взаимно однозначным.

Предположим, что задан алфавит Y={a1,..., ar} (r>1) и набор вероятностей p1, . . . , pr появления символов a1,..., ar. Пусть, далее, задан алфавит W, W={b1, ..., bq} (q>1). Тогда можно построить целый ряд схем S алфавитного кодирования

a1B1,
. . .
arBr

обладающих свойством взаимной однозначности.

Для каждой схемы можно ввести среднюю длину lср, определяемую как математической ожидание длины элементарного кода:

Характеристики

Тип файла
Документ
Размер
3,06 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее