Главная » Просмотр файлов » Лекции по дискретной математике

Лекции по дискретной математике (1109693), страница 8

Файл №1109693 Лекции по дискретной математике (Лекции по дискретной математике) 8 страницаЛекции по дискретной математике (1109693) страница 82019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

которое мы уже встречали в теореме 2.5.2. Минимальный много­член над GF(q) элемента β, принадлежащего GF(q), является многочленом первой степени f(x:) = x – β

.

Теорема 2.6.6. Пустьg (х) произвольный многочлен над GF(q). Тогда существует расширение GF(Q), в котором g(х) распадается на произведение линейных множителей.

Доказательство. Без потери общности можно предположить, что g(х) приведен. Построим последовательность расширений GF(q) < GF (Q1) <GF(Q2)< … <GF(Q) ) по следующему правилу. На каждом шаге запишем g(х) в виде произведения простых многочленов над GF(Qj). Если еще имеются нелинейные множители, то выберем один из них, скажем gj (х), и построим расширение поля GF(Qj), используя gj(у) в качестве простого модуля. В этом расширении g(х) можно разложить далее, поскольку новый элемент β = у является корнем многочлена g(х). Таким образом (в случае необходимости унифицируя обозначения) будем действовать до тех пор, пока все множители не станут линейными. Поскольку степень g(х) конечна, процесс закончится после конечного числа шагов.

Определение 2.6.7. Любое расширение поля GF(q), в котором многочлен g(х) над GF(q) распадается в произведение линейных множителей и констант, называется полем разложения много­члена g(х).

Теперь у нас есть все необходимое для описания структуры произвольного поля Галуа.

Теорема 2.6.8. Пусть а — примитивный элемент поля Галуа GF(Q), являющегося расширением поля GF(q), и пусть m — степень минимального многочлена f(х) элемента α над GF(q). Тогда число элементов в поле равно Q = qm и каждый элемент β может быть представлен в виде

β = аm-1α m-1+am-2αm-2 + ,,,, -+ a1α1+ a0,

где a0, a1, … ,am-1— элементы поля GF(q). . : :


Доказательство. Очевидно, что каждый элемент β вида

β = аm-1α m-1+am-2αm-2 + ,,,, -+ a1α1+ a0

принадлежит полю GF(Q). Такое разложение единственно, так как если

β= bm-1α m-1+bm-2αm-2 + ,,,, -+ b1α1+ b0

— другое представление элемента р, то

О = (аm-1- bm-1m-1+ (am-2-bm-2m-2 + ,,,, -+ (a1 b11+ a0-bm-1, и, следовательно, α является корнем многочлена степени m- 1, что противоречит выбору числа m. Всего имеется qm таких элементов β, и, следовательно, число элементов поля Q не меньше qm . С другой стороны, каждый ненулевой элемент поля может быть представлен в виде некоторой степени элемента α. Но если f(х) — минимальный многочлен элемента α, то f(α) = 0. Следо­вательно,

αm+fm-1α m-1+fm-2αm-2 + ,,,, -+ f1α1+ f0=0,

Полученное равенство можно использовать для того, чтобы выразить элемент аm через сумму меньших степеней элемента α:

αm =-( fm-1α m-1+fm-2αm-2 + ,,,, -+ f1α1+ f0)

Полученное соотношение можно повторно применять для редукции любой степени элемента α

к линейной комбинации степеней (αm-1, .,., α1, α°).

Следовательно, каждый элемент поля GF(Q) может быть представлен в виде линейной

комбинации элементов (αm-1, .,., α1, α°), так что Q не может быть больше qm, и теорема доказана.

Следствие 2.6.9. Каждое поле Галуа содержит рm элементов, где р—некоторое простое, а m—положительное целое число.

Доказательство. Каждое поле Галуа содержит подполе с р элементами, к которому надо применить теорему 2.6.8.

Заметим, что теорему 2.6.8 можно использовать для того, чтобы связать с каждым элементом поля некоторый многочлен степени не выше m -1 путем простой замены элемента α на неопределенную переменную х. Эти многочлены можно рассматривать как элементы поля. Складываться и умножаться они будут по модулю минимального многочлена f(х) элемента α. Это в точности то же самое поле, которое получается в теореме 2.4.3, если в качестве простого многочлена выбрать f(х). Следовательно, число элементов в каждом поле Галуа равно степени простого числа, и каждое поле Галуа может быть построено с помощью арифметики по модулю простого многочлена.

Наконец, мы должны доказать и обратное: такое поле существует для каждого простого р и целого положительного числа m. Прежде всего установим некоторые предварительные результаты.

Теорема 2.6.10. Пусть характеристика поля GF(q) равна р. Тогда для любых элементов α и β из GF(q) и любого положительного целого

pm pm pm

(α±β) =α ±β

Доказательство. Предположим, что теорема верна для m=1. Тогда

p p p

(α±β) =α ±β

. Возведем это равенство в р-ю степень

((α±β)p)p =(αpp)p

и снова используем теорему для m = 1

p2 p2 p2

(α±β) = α ±β.

Повторяя эту процедуру m-1 раз, получим

pm pm pm

(α±β) =α ±β

Следовательно, теорему надо доказать только для m = 1. Вос­пользовавшись биномиальным разложением

p p

(α±β)p = ∑ ci αi (±β)p-i

i=0

p

вpидим, что достаточно доказать, что в поле GF(q) выполняется" равенство cip =0.

Но для каждого I число сочетаний

cpi = p! /(i! (p-i)!)=(p (p-1)!)/(i!(p-1)!)

является целым числом, а p — простое. Следовательно, знаменатель делит — 1)!, а число cpi кратно р. Таким образом, cpi (mod p)=`, и поскольку арифметикой целых чисел в поле GF(q) является арифметика по модулю р, то в GF (q) биномиальный коэффициент cpi. =0. Наконец, если р — 2, то (±β)2 = β2, а если р нечетно, то (±β)р = ±βp. Это завершает доказательство теоремы.

Теорема 2.6.11. Пусть р — простое, а т положительное целое число. Тогда наименьшее поле разложения многочлена g(х) = ( xp)m –х , рассматриваемого над полем GF(р), содержит рт элементов.

Доказательство. Каждый многочлен над GF(р) имеет наименьшее поле разложения. Пусть GF(Q) — наименьшее поле разложения многочлена g(х).. Тогда в поле GF(Q) многочлен g(х} имеет рт корней (возможно, кратных). Мы покажем, что все рт корней различны и образуют поле. Из этого будет следовать, что GF(Q) содержит рт элементов.

Для того чтобы доказать, что множество корней образует поле, достаточно показать, что оно замкнуто относительно операций сложения и умножения и содержит обратные для всех ненулевых элементов. Пусть α и β — корни многочлена g(х). Согласно теореме 2.6.10,

pm pm pm

(α±β) =α ±β =α± β ,

так что а ± β — также корень многочлена, и, следовательно, множество замкнуто относительно операции сложения. Далее,

((αβ)p)m =(αp)m p)m αβ

и, таким образом, αβ тоже является корнем, и множество корней замкнуто относительно операции умножения. Далее, -α является аддитивным обратным элементу α, так что каждый элемент имеет аддитивный обратный. Аналогично легко проверить, что если а — корень многочлена, то α-1 —также его корень.

Наконец, проверим, что все рm корней многочлена ( xp)m- х различны. Это вытекает из вида формальной производной:

d [( xp)m- х]/ dx =((pm)) ( xp)m/x - x),

так как ((р))=0 в поле GF(Q). Следовательно, многочлен g(х) = ( xp)m –х не имеет кратных корней.

Теперь мы получили обращение теоремы 2.6.9.

Следствие 2.6.12. Для каждого простого р и положительного целого числа т существует поле Галуа с рт элементами.

Покажем, наконец, что если q является не простым числом, а степенью простого числа, то GF(qт) можно построить как расширение поля GF(q). Для этого достаточно доказать существование над GF(q) простых многочленов степени т.

Теорема 2.6.13. Для каждого целого положительного т над каждым конечным полем GF(q) существует хотя бы один простой многочлен степени т.

Доказательство. Так как qстепень простого числа, то qт также является степенью простого числа. Согласно следствию 2.6.12, существует поле с qт элементами. Это поле содержит примитивный элемент а, и, по теореме 2.6.8, минимальный многочлен этого элемента а над GF(q) является простым многочленом степени т.

Следствие 2.6.14. Для каждого целого положительного т над каждым конечным полем GF(q) существует хотя бы один примитивный многочлен степени т.

Доказательство. Пусть α — примитивный элемент поля GF(qт), и пусть f(х) — минимальный многочлен элемента а, над GF(q). Тогда в поле многочленов по модулю f(х) примитивный элемент α = х является корнем многочлена f(х), так что многочлен х представляет собой примитивный элемент поля.

  1. ВАРИАНТЫ ДОМАШНИХ ЗАДАНИЙ

ЗАДАНИЕ № 1

  • Пусть G=(0;1;2;3;4;5;6;7;8 )- группа с групповой операцией- сложение по модулю 9. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1573, 308). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1573, 308)= А*1573 + В*308.

  • Доказать, что р(х)=х2+ 2х3+ 3 неприводим над полем GF(5 ). Чему равен порядок элемента х по умножению в поле GF(52), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(52)

ЗАДАНИЕ № 2

  • Пусть G=(0;1;2;3;4;5;6;7;8;9;10;11 )- группа с групповой операцией- сложение по модулю 12. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(605, 308). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 605, 308)= А*605 + В*308.

  • Доказать, что р(х)=х2+ 3х3+ 3 неприводим над полем GF(5 ). Чему равен порядок элемента х по умножению в поле GF(52), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(52)

ЗАДАНИЕ № 3

  • Пусть G=(0;1;2;3;4;5 )- группа с групповой операцией- сложение по модулю 6. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1572, 308). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1572, 308)= А*1572 + В*308.

  • Доказать, что р(х)=х2+4х+ 2 неприводим над полем GF(5 ). Чему равен порядок элемента х по умножению в поле GF(52), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(52 )

ЗАДАНИЕ № 4

  • Пусть G=(0;1;2;3;4;5;6;7 )- группа с групповой операцией- сложение по модулю 8. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(8991, 592). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 8991, 592)= А*8991 + В*592.

  • Доказать, что р(х)=х3+ 2х+1 неприводим над полем GF( 3).Чему равен порядок элемента х по умножению в поле GF(33), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(33)

ЗАДАНИЕ № 5

  • Пусть G=(0;1;2;3;4;5;6;7;8;9 )- группа с групповой операцией- сложение по модулю 10. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(3003,429). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 3003, 429)= А*3003 + В*429.

  • Доказать, что р(х)= х3+ х2+ 2х+ 1 неприводим над полем GF( 3).Чему равен порядок элемента х по умножению в поле GF(33), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(33)

ЗАДАНИЕ № 6

  • Пусть G=(0;1;2;3;4;5;6;7;8;9;10;11;12;13 )- группа с групповой операцией- сложение по модулю 14. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1155, 616). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1155, 616)= А*1155 + В*616.

  • Доказать, что р(х)=х3+ 2х2+ х+ 1 неприводим над полем GF(3 ). Чему равен порядок элемента х по умножению в поле GF(33 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(33 )

ЗАДАНИЕ № 7

  • Пусть G=(0;1;2;3;4;5;6;7;8;9;10;11;12;13;14 )- группа с групповой операцией- сложение по модулю 15. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1001, 858). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1001, 858)= А*1001 + В*858.

  • Доказать, что р(х)=х3+ 2х2+1 неприводим над полем GF( 3). Чему равен порядок элемента х по умножению в поле GF(33), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(33)

ЗАДАНИЕ № 8

  • Пусть G=(0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15 )- группа с групповой операцией- сложение по модулю 16. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(603, 308). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 603, 308)= А*603 + В*308.

  • Доказать, что р(х)=х2+ х+2 неприводим над полем GF( 3).Чему равен порядок элемента х по умножению в поле GF(32 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(32 ). Разложить над этим полем многочлен q(y)=7y3 -5y2-6y+8.

ЗАДАНИЕ № 9

  • Пусть G=(0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17 )- группа с групповой операцией- сложение по модулю 18. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1573, 552). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1573, 552)= А*1573 + В*552.

  • Доказать, что р(х)=х2+ 2х+ 2 неприводим над полем GF( 3).Чему равен порядок элемента х по умножению в поле GF(32 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(32 ). Разложить над этим полем многочлен q(y)=5y3 -5y2-8y+8

ЗАДАНИЕ № 10

  • Пусть G- группа с групповой операцией- сложение по модулю 20. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(1570, 306). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 1570, 306)= А*1570 + В*306.

  • Доказать, что р(х)=х2+ 2х+ 3 неприводим над полем GF(5).Чему равен порядок элемента х по умножению в поле GF(52 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(52 )

ЗАДАНИЕ № 11

  • Пусть G- группа с групповой операцией- сложение по модулю 21. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(3146, 924). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 3145, 924)= А*3145 + В*924

  • Доказать, что р(х)=х2+ х+ 2 неприводим над полем GF(4 ). Чему равен порядок элемента х по умножению в поле GF(42 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(42)

ЗАДАНИЕ № 12

  • Пусть G- группа с групповой операцией- сложение по модулю 24. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

  • Найти НОД(3100, 308). Найти целые числа А и В, удовлетворяющие равенству

НОД ( 3100, 308)= А*3100 + В*308.

  • Доказать, что р(х)=х2+ х+ 3 неприводим над полем GF(4 ). Чему равен порядок элемента х по умножению в поле GF(42 ), построенному по модулю р(х). Построить таблицы по умножению и по сложению в поле GF(42)

ЗАДАНИЕ № 13

  • Пусть G=(1;2;3;4;5;6;7;8 )- группа с групповой операцией *, задаваемой таблицей. Определить порядок каждого элемента группы. Найти подгруппы. Разложить группу на смежные классы по одной из подгрупп.

* |1 2 3 4 5 6 7 8

Характеристики

Тип файла
Документ
Размер
582 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6274
Авторов
на СтудИзбе
316
Средний доход
с одного платного файла
Обучение Подробнее