Ответы на теорию по химии элементов (1106641), страница 8
Текст из файла (страница 8)
Р2O3+3Н2O=2Н3РO3
Но достаточно небольшого нагревания, чтобы вместо гидратации шел окислительно-восстановительный процесс:
В реакции с щелочами образует соли: 4NaOH+Р2О3=2Na2HPO3+Н2О
Оксид фосфора (III) обладает восстановительными свойствами: окисляется кислородом до Р2О5: Р2O3+O2=Р2O5
Строение молекулы - тетраэдрическое.
Фосфорноватистая кислота H3PO2 — сильная одноосновная кислота. Бесцветное твердое вещество, растворимое в воде, спиртах и диоксане.Фосфорноватистую кислоту получают по в две стадии. На первой стадии белый фосфор обрабатывается растовором щелочи:
2Р4(белый) + 3Ва(ОН)2 + 6H2O > 2РH3 + 3Ва(Н2PO2)2
И затем выделяют кислоту, обрабатывая ее соль более сильной кислотой:
Ва(Н2PO2)2 + H2SO4 > BaSO4 + 2H3PO2
Соли фосфорноватистой кислоты называются гипофосфитами. Они хорошо растворимы в воде. Гипофосфиты и фосфорноватистая кислота являются энергичными восстановителями, особенно в кислой среде. Наибольшее практическое значение имеет их способность восстанавливать растворенные соли некоторых металлов (Ni, Сu и др.) до свободного металла. Сама кислота H3PO2 при этом окисляется до фосфористой кислоты H3РО3:
Ni2+ + 2H2PO2– + 2H2O > Ni0 + 2H2PO3– + Н2 + 2H+
Соли фосфорноватистой кислоты также используются для приготовления лекарственных препаратов.
H3PO3, средняя двухосновная кислота.Безводная фосфористая кислота – бесцветные гигроскопичные кристаллы. Фосфористая кислота является кислотой средней силы
При нагревании до 250°С безводная фосфористая кислота разлагается на фосфорную кислоту и фосфин, а водные её растворы – на фосфорную кислоту и водород.
4H3РО3 > 3H3PO4 + РH3
Фосфористая кислота легко окисляется галогенами, оксидами азота и пр. до фосфорной кислоты.
Соли фосфористой ксилоты называются фосфитами. Большинство фосфитов мало растворимо в воде.
Фосфористая кислота и её соли являются сильными восстановителями. Однако активные металлы в кислом растворе восстанавливают H3РО3 до РH3
Ортофосфорная - неорганическая кислота с химической формулой H3PO4, которая при стандартных условиях представляет собой бесцветные гигроскопичные кристаллы.
При температуре выше 213 °C она превращается в пирофосфорную кислоту H4P2O7. Очень хорошо растворима в воде.
H3PO4 — трехосновная кислота средней силы. При взаимодействии с очень сильной кислотой, например НClO4, фосфорная кислота проявляет признаки амфотерности — образуются соли фосфорила, например [Р(ОН)4]·(ClO4).
Отличительной реакцией ортофосфорной кислоты от других фосфорных кислот является реакция с нитратом серебра — образуется жёлтый осадок:
Н3РО4 + 3AgNO3 = Ag3PO4 + 3HNO3
Качественной реакцией на ион РО43- является образование ярко-жёлтого осадка молибденофосфата аммония:
H3PO4 + 12(NH4)2MoO4 + 2HNО3 = (NH4)3PMo12O40·6H2O + 21NH4NO3 + 6Н2О
Соли фосфорной кислоты называются фосфатами. Фосфорная кислота образует одно-, двух- и трехзамещенные соли.
Н3РО4 + NaOH = NaH2PO4 + H2O (дигидрофосфат натрия)
H3PO4 + 2NaOH = Na2HPO4 + 2H2O (гидрофосфат натрия)
H3PO4 + 3NaOH = Na3PO4 + 3H2O (фосфат натрия)
Дигидрофосфаты (однозамещенные фосфаты) имеют кислую реакцию, гидрофосфаты (двузамещенные фосфаты) — слабощелочную, средние (трехзамещенные фосфаты, или просто фосфаты) — щелочную.
Дигидрофосфаты обычно хорошо растворимы в воде, почти все гидрофосфаты и фосфаты растворимы мало. Прокаливание солей приводит к следующим превращениям:
NaH2PO4 = NaPO3 + H2O
2Na2HPO4 = Na4P2O7 + H2O
Фосфаты при прокаливании не разлагаются, исключение составляет (NH4)3PO4.
Органические фосфаты играют очень важную роль в биологических процессах. Фосфаты сахаров участвуют в фотосинтезе. Нуклеиновые кислоты также содержат остаток фосфорной кислоты.
21//21. Получение и применение фосфорной кислоты. Строение аниона PO4
3–. Растворимость солей ортофосфорной кислоты и их гидролиз. Фосфатная бу-
ферная система.
Фосфорную кислоту получают из фосфорита:
Ca3(PO4)2+3H2SO4=3CaSO4+2H3PO4
Можно получить гидролизом пентахлорида фосфора:
PCl5+4H2O=H3PO4+5HCl
Или взаимодействием с водой оксид фосфора(V), полученного сжиганием фосфора в кислороде:
P2O5+3H2O=2H3Po4
С водой реакция идет очень бурно, поэтому оксид фосфора(V) обрабатывают нагретым до 200° С концентрированным раствором ортофосфорной кислоты.
Используется при пайке в качестве флюса (по окисленой меди, по чёрному металлу, по нержавеющей стали), для исследований в области молекулярной биологии. Применяется также для очищения от ржавчины металлических поверхностей. Образует на обработанной поверхности защитную плёнку, предотвращая дальнейшую коррозию.
Ортофосфорная кислота зарегистрирована в качестве пищевой добавки E338. Применяется как регулятор кислотности в газированных напитках.
Применение ортофосфорной кислоты в сельском хозяйстве. в звероводстве (в частности, при выращивании норок) используют выпойку р-ра ортофосфорной кислоты для профилактики повышенного рН желудка и мочекаменной болезни.
Все дигидрофосфаты хорошо расторимы, а гидро - и фосфаты - как правило, хуёво, ибо это соли щелочных металлов.
В водных расворах эти соли гидролизируются. И создают в р-рах щёлочную среду.
Ионы Н2РО4- и НРО4- образуют фосфатную буферную систему крови, которая поддерживает постоянное значение рН в крови. в плазме - 7.4, в эритроцитах - 7.25
В основе дйствия - кислотно-основное равновесие
Н2РО4+Н2О=НРО4+Н3О
Фосфатная буферная система крови имеет более высокую ёмкость по кислоте
22// Углерод. Полиморфные модификации. Оксиды углерода. Энергетическая
диаграмма молекулы CO. Физические и химические свойства CO и CO2.
«Парниковый» эффект.
Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.
Природный углерод состоит из двух стабильных изотопов — 12С (98,892 %) и 13С (1,108 %) и одного радиоактивного изотопа 14С (?-излучатель, Т?= 5730 лет), сосредоточенного в атмосфере и верхней части земной коры.
Аллотропнеые модификации:
графит
алмаз
карбин
лонсдейлит
фуллерены
углеродные нанотрубки
графен
аморфный углерод
уголь
техуглерод
сажа
Полиморфизм - способность твердых веществ и жидких кристаллов существовать в двух или нескольких формах с различной кристаллической структурой и свойствами при одном и том же химическом составе
Типичный пример полиморфных форм - модификации углерода (алмаз, лонсдейлит, графит, карбины и фуллерены), которые резко различаются по свойствам. Наиболее стабильной формой существования углерода является графит, однако и другие его модификации при обычных условиях могут сохраняться сколь угодно долго. При высоких температурах они переходят в графит. В случае алмаза это происходит при нагревании выше 1000 oС в отсутствие кислорода. Обратный переход осуществить гораздо труднее. Необходима не только высокая температура (1200-1600 oС), но и гигантское давление - до 100 тысяч атмосфер. Превращение графита в алмаз проходит легче в присутствии расплавленных металлов (железа, кобальта, хрома и других).
Монооксид.
Молекула CO, так же, как и изоэлектронная ей молекула азота, имеет тройную связь. Так как эти молекулы сходны по строению, то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.
В рамках метода валентных связей строение молекулы CO можно описать формулой :C?O:, причём третья связь образована по донорно-акцепторному механизму, где углерод является акцептором электронной пары, а кислород — донором.
1. Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:
2C + O2 > 2CO^ (тепловой эффект этой реакции 22 кДж),
2. или при восстановлении диоксида углерода раскалённым углём:
CO2 + C - 2CO^ (?H=172 кДж, ?S=176 Дж/К).
1. Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропуская муравьиную кислоту над оксидом фосфора P2O5. Схема реакции:
HCOOH >(t, H2SO4) H2O + CO^
Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:
HCOOH + ClSO3H > H2SO4 + HCl + CO^.
2. Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
H2C2O4 >(t, H2SO4) CO^ + CO2^ + H2O.Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаками отравления служат головная боль, головокружение и потеря сознания. Токсическое действие монооксида углерода основано на том, что он связывается с гемоглобином крови прочнее, чем кислород (при этом образуется карбоксигемоглобин), таким образом, блокируя процессы транспортировки кислорода и клеточного дыхания.
Хим. св-ва
CO + Cl2 > COCl2
(FCO)2O2 + 2KI > 2KF + I2 + 2CO2^
SO2 + 2CO > 2CO2 + S
CO + KOH > HCOOK
Диоксид углерода.
Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.
По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).
23//Взаимодействие CO2 с водой. Угольная кислота и ее соли. Природные карбонаты. Карбонатная буферная система.
CO2 + H2O = H2CO3
Угольная кислота проявляет свойства слабой двухосновной кислоты.
Она образует ряд солей: средние - карбонаты (Na2CO3) и кислые - гидрокарбонаты (NaHCO3).
В воде карбонат-ионы гидролизуются, создавая щелочную среду. Так, рН 0,1 М раствора Na2CO3 равен 10,3.
Гидрокарбонаты щелочных металлов также гидролизуются, но в меньшей степени; рН 0,1 М раствора NaHCO3 равен 8,3.
Карбонаты широко распространены в природе, например: кальцит СаСО3, магнезит MgCO3, сидерит FeCO3, витерит ВаСО3, баритокальцит BaCa(CO3)2 и др. Существуют и минералы, представляющие собой основные карбонаты, например, малахит CuCO3·Cu(ОН)2.
Гидрокарбонаты натрия, кальция и магния встречаются в растворённом виде в минеральных водах, а также, в небольшой концентрации, во всех природных водах, кроме атмосферных осадков и ледников. Гидрокарбонаты кальция и магния обуславливают так называемую временную жёсткость воды. При сильном нагревании воды (выше 60°C) гидрокарбонаты кальция и магния разлагаются на углекислый газ и малорастворимые карбонаты, которые выпадают в осадок на нагревательных элементах, дне и стенках посуды, внутренних поверхностях баков, бойлеров, труб, запорной арматуры и т.д., образуя накипь.
Для плазмы крови самая важная буферная система - это карбонатная (она состоит из гидрокарбоната натрия NaHCO3 и угольной кислоты H2CO3). Карбонатная буферная система хорошо справляется с регулированием кислотности крови. Если в кровь поступает повышенное количество молочной кислоты, которая образуется в мышцах из глюкозы при напряженной физической работе, то она нейтрализуется. Получается угольная кислота, которая удаляется в виде газообразного диоксида углерода, уходящего с дыханием через легкие.
24//Кремний. Оксид кремния(IV) и его свойства. Кремниевые кислоты и их соли. Силикагель. Гидролиз силикатов. Силикаты в природе и промышленности.
По распространенности в природе кремний занимает второе место.
Его особенно много в земной коре - 27,6 мас.% в виде смеси различных соединений кремния с кислородом и другими элементами.
Часто встречается и свободный оксид кремния SiO2 в виде песка.
В живых организмах содержание кремния незначительно - 0,15 мас.% в растениях и 1*10-5 мас.% в животных.
В зависимости от условий получения простое вещество - кремний - может иметь различный внешний вид, но одинаковую кристаллическую структуру.
Кремний может представлять собой бурый порошок или темно-серое компактное вещество с металлическим блеском.
Он довольно тверд, хрупок, хорошо проводит тепло, обладает полупроводниковыми свойствами.
Химическая активность кремния зависит от его дисперсности. Чем меньше размеры кристаллов, тем легче он вступает во взаимодействие с другими веществами.
Мелкодисперсный кремний окисляется фтором, подобно углероду, при комнатной температуре, а хлором и кислородом - при 400-600 градусах Цельсия:
Si + 2F2 = SiF4
Si + 2CI2 = SiCI4
Si + O2 = SiO2.
С углеродом и бором при 2000 С кремний образует карбид кремния SiC и бориды B3Si и B6Si, соответственно.
Кремний растворяется во многих расплавленных металлах, причем с некоторыми из них он не реагирует (Zn, As, Sn, Pb и др.), а с некоторыми (Mg, Ca, Fe, Cu и др.) образует силициды: 2Mg + Si = Mg2Si.
Si + 4HF = SiF4 + 2H2
С кислотами-неокислителями он не взаимодействует и растворяется только в смеси HNO3 и HF: азотная кислота окисляет кремний, а плавиковая переводит нерастворимые продукты окисления в устойчивый комплексный ион - гексафторосиликат: 3Si + 4HNO3 + 18HF = 3H2[SiF6] + 4NO + 8H2O.
В растворах щелочей кремний энергично растворяется даже на холоду, образуя соли кремниевой кислоты - силикаты: Si + 2NaOH + H2O = Na2SiO3 + 2H2O.
В промышленных масштабах кремний получают восстановлением SiO2 коксом или древесным углем в электропечах при температуре 1500 С: SiO2 + 2C = Si + 2CO.
В лаборатории кремний получают восстановлением SiO2 магнием: SiO2 + 2Mg = 2MgO + Si.
Кремний высокой чистоты, пригодный для изготовления полупроводниковых материалов, получают либо восстановлением водородом SiCI4 и SiBr4, либо термическим разложением SiI4 и SiH4.
Оксид кремния(IV) SiO2 - диоксид кремния, кремнезем - наиболее устойчивое соединение кремния.
Кремнезем всех модификаций полимерен, он построен из тетраэдров [SiO4]. Каждый атом кремния в кристалле SiO2 окружен 4 атомами кислорода. Тетраэдры связаны друг с другом вершинами и образуют трехмерный каркас.
Взаимное расположение тетраэдров в пространстве определяет ту или иную модификацию кремнезема: кварц, кристобалит или тридимит.