Ответы на теорию по химии элементов (1106641), страница 10
Текст из файла (страница 10)
В отличие от других кислот, кислотные свойства Н3В03 обусловлены не отщеплением иона Н+, а присоединением гидроксид-иона ОН- воды: Н3В03 + H2O = [B(OH)4]- + H+.
При нейтрализации Н3ВО3 раствором щёлочи образуются комплексные ионы - тетрагидроксобораты: Н3В03 + NaOH = Na[B(OH)4].
При избытке щёлочи в растворе получаются тетрабораты, которые кристаллизуются из растворов в виде кристаллогидратов: 4Н3В03 + 2NaOH + ЗН20 = Na2B4O7*10H2O.
Тетрабораты можно получить и в результате твердофазной реакции: 4Н3В03 + 2NaOH = Na2B407 + 7H20 или 4Н3ВО3 + Na2C03 = Na2B407 + 6H20 + СО2.
Ортобораты (соли Н3В03) и метабораты (соли НВ02) получаются только в твердофазных реакциях, например при сплавлении оксидов бора и металла: В203 + 3Li20 = 2Li3BO3 или В203 + Li20 = 2LiBO2.
Орто- и метабораты в воде сильно гидролизуются, поскольку Н3В03 является очень слабой кислотой: Na3B03 + ЗН20 = 3NaOH + Н3В03.
Тетрабораты в водных растворах также гидролнзованы, причём продуктом гидролиза является борная кислота: Na2B407 + 7Н20 = 4H3BO3 + 2NaOH.
Наибольшее практическое значение среди боратов имеет бура Nа2В4О7*10Н2О (декагидрат тетрабората натрия). Её используют геологи для анализа минералов в полевых условиях.
Бура применяется и как антисептик. Фармакологическое действие её обу¬словлено гидролизом с выделением борной кислоты и щёлочи, которые вызывают свёртывание белков микробных клеток.
В состав стоматологических паст и клеев входит NaB02.
Оксид бора, борная кислота, бораты применяются для получения стекол, эмалей, глазури, огнестойких покрытий, флюсов.
Своё применение бор находит также в атомной промышленности. Он входит в состав материалов, поглощающих нейтроны в устройствах для регулирования цепных реакций в атомных реакторах.
Бор применяется как добавка к ракетному топливу, им насыщают поверхность стальных изделий для придания коррозионной стойкости (борирование).
Бор используют как упрочнитель композиционных материалов, как легирующую добавку к жаростойким материалам.
27// Алюминий. Строение, свойства, получение и применение алюминия и его сплавов. Свойства оксида и гидроксида алюминия. Алюмотермия. Гидролиз солей алюминия.
По распространённости алюминий занимает четвёртое место после кислорода, водорода и кремния, причём основная его масса сосредоточена в алюмосиликатах.
Из алюмосиликатов наиболее распространены полевые шпаты, слюды, каолин, цеолиты.
В промышленности искусственно получают цеолиты, обладающие сквозными пустотами с диаметром от 3 до 13 А. Такие цеолиты используют как молекулярные сита: они поглощают только те молекулы, которые могут войти в эти пустоты.
Молекулярные сита используют для разделения смесей углеводородов, очистки газов и жидкостей.
При переходе от бора к апюминию происходит увеличение атомного радиуса и уменьшение потенциалов ионизации, а, следовательно, появляются металлические свойства.
Алюминий - металл серебрисюго цвета мягкий, лёгкий и легкоплавкий (Тпл =660,4°С). Он имеет высокие механические и электрические характеристики.
Кристаллическая структура Аl при обычном давлении - кубическая, с плотнейшей упаковкой атомов.
Алюминий химически активен и на воздухе покрывается оксидной плёнкой Аl2О3, обладающей очень хорошим сцеплением с металлической поверхностью и высокой прочностью.
Она защищает металл от химического воздействия, и поэтому большинство реакций с участием металлического алюминия проходит со скрытым (латентным) периодом, необходимым для разрушения плёнки или для диффузии реагентов через неё.
Прочность оксида такова что, например, гранулированный алюминий не сплавляется в слиток даже при нагреве до 1200°С, так как каждая капля расплава окружена плотной плёнкой оксида.
В мелкораздробленном состоянии (пудра) и при высокой температуре А1 сгорает в чистом кислороде с выделением большого количества теплоты: 4А1 + 302 = 2А1203; ?Н° = - 1676 кДж/моль.
При нагревании алюминий реагирует с серой: 2AI + 3S = Al2S3.
С фтором, хлором и бромом А1 взаимодействует при обычных условиях, а с иодом - при нагревании или в присутствии катализатора (Н2О). Продуктами реакций являются тригатогениды алюминия AlHal3.
При сильном нагревании Al(800°С) реагируeт с азотом, образуя нитрид: 2Аl + N2 = 2AlN.
Алюминий обладает сильными восстановительными свойствами. Широко используется способность порошкового алюминия к восстановлению металлов из их оксидов - "алюмотермия", например: 2AI + Fe203 = Аl203 + 2Fe.
Подобные реакции сопровождаются выделением большого количества теплоты и повышением температуры до 1200-3000°С. Методом алюмотермии можно получить из оксидов такие металлы, как железо, марганец, хром, ванадий и вольфрам.
В соответствии со своим положением в ряду cтандартных электродных потенциалов (Е°(А13+/А1) = -1,66 В) алюминий должен растворяться в воде. На практике эта реакция не идёт из-за наличия на поверхности металла оксидной плёнки.
Лишённый защитного слоя (например, методом амальгамирования) алюминий легко взаимодействует с водой: 2А1 + 6Н20 = 2А1(ОН)3 + ЗН2.
При обычных условиях алюминий растворяется в растворах кислот и щелочей:
2Аl + 6HCl = 2А1Сl3 + ЗН2
2Al + 2КОН + 6Н20 = 2K[Al(OH)4] + ЗН2.
Важным свойством алюминия является его инертность по отношению к концентрированным кислотам-окислителям HNO3 и H2SO4 на холоду. Это объясняется тем, что подобные кислородсодержащие вещества увеличивают толщину и прочность оксидной плёнки и усиливают склонность алюминия к пассивации.
Металлический алюминий образует сплавы с большинством известных металлов и неметаллов (например, Si). Многие сплавы на основе алюминия, например, дюралюминий, силумин, алюминиевая бронза имеют широкое практическое применение в самолётостроении и кораблестроении.
Гидрид алюминия имеет полимерное строение (АlН3)n и представляет собой порошок белого цвета.
При температуре выше 105°С он разлагается с выделением водорода.
Подробно гидридам бора, гидрид алюминия - соединение с дефицитом электронов на р-орбитали, поэтому для восполнения этого дефицита он образует гидридоалюминаты:
nNaH + (АlН3)n = nNa[AlH4]
2NaH + Na[AlH4] = Na3[AlH6].
Гидридоалюминаты представляют собой белые твёрдые вещества.
Они являются сильными восстановителями, поскольку водород, входящий в состав комплексного аниона, имеет степень окисления 1.
Гидридоалюминаты, как и гидридобораты, широко применяются в органическом синтезе как восстановители.
Оксид алюминия Аl2O3 образуется самопроизвольно на поверхности металла.
Его можно также синтезировать путём термического разложения некоторых соединений алюминия, например, нитрата или гидроксида:
4Al(NO3)3 = 2Al2O3 + 12NO2 + 3O2
2Al(OH)3 = Al2O3 + 3H2O.
Оксид Аl2О3 имеет несколько модификаций. В земной коре встречается наиболее устойчивая кристатлическая модификация а-Аl2О3 в виде минерала корунда.
Искусственно получаемый из бокситов сильно прокатенный Аl2О3, называемый алундом, широко используется как огнеупорный материал.
Оксид алюминия Аl2О3, прошедший высокотемпературную обработку, химически инертен.
Непрокаленный оксид алюминия растворяется в кислотах с образованием солей, катион Аl в которых существует в форме аквакомплекса [A1(H20)6]3+: Аl2О3 + 6НСl = 2АlСl3 + ЗН20.
В растворах щелочей оксид алюминия растворяется с образованием гидроксокомплексов [А1(ОН)4]- или [А1(ОН)6]3-: Аl203 + 3H20 + 2NaOH = 2Na[Al(OH)4].
В расплавах щелочей образуются метаалюминаты Аl02-: Al2O3 + 2NaOH = 2NaAl02 + Н20.
Метаалюминаты щелочных металлов устойчивы только в твёрдом состоянии, при растворении в воде они превращаются в гидроксоалюминаты: NaAl02 + 2Н20 = Na[AI(OH)4].
Метаалюминаты можно получить при спекании карбонатов с оксидом алюминия: А1203 + Na2C03 = 2NaA102 + C02.
Гидроксид алюминия А1(ОН)3 получают при взаимодействии солей алюминия со щёлочью или раствором аммиака:
АlСl3 + 3NaOH = Аl(ОН)3 + 3NaCl
AlCl3 + 3NH3 + ЗН20 = 3NH4Cl + Аl(ОН)3.
Растворимые соли Аl3+ подвергаются сильному гидролизу, поэтому их растворы имеют кислую реакцию: Аl(Н20)63+ + Н20 = [Аl(Н20)5ОН]2+ + Н30+.
Из-за сильного гидролиза многие соли алюминия, такие, как сульфид (Al2S3), сульфит Al2(S03)3, карбонат Аl2(С03)3 и цианид Al(CN)3 нельзя получить в водном растворе: Al2S3 + 6Н20 = 2Аl(ОН)3 + 3H2S.
Человеческий организм содержит микроколичества А1 (~1e-5%). Суточное потребление алюминия человеком ~47 мг. Алюминий влияет на рост эпителиальной и соединительной тканей, на регенерацию костных тканей, на обмен фосфора.
Соли алюминия, в частности алюмокалиевые квасцы, KAl(S04)2*12H2O, применяют в медицине для полосканий, промываний при воспалительных заболеваниях кожи и слизистых оболочек, а также как кровеостанавливающее средство.
Жженые квасцы K[AI(S04)2] используют в виде присыпок при потливости ног. Осушающее действие связано с тем, что жжeные квасцы медленно поглощают воду: K[Al(SO4)2] + nH20 = KAl(S04)2*nH20.
Они также дезинфицируют кожу, разрушая белки микробов, в результате исчезает неприятный запах, который создают продукты жизнедеятельности микроорганизмов, питательной средой для которых является пот.
28//Металлы 2 группы. Получение, применение и свойства простых веществ. Биологическая роль магния, кальция. Свойства оксидов, гидроксидов и солей металлов 2 группы. Жесткость воды, цели и методы ее устранения.
Во IIА группу входят бериллий (Be), магний (Mg), кальций (Са), стронций (Sr), барий (Ва), и радиоактивный радий (Ra). Кальций, стронций и барий объединяются в группу щелочноземельных элементов. Электронная конфигурация внешней орбитали элементов II А группы ns2. В соединениях они проявллют степень окисления +2.
Элементы II А группы обладают металлическими свойствами. В виде простых веществ они представляют собой серебристо-белые металлы.
Стандартные электродные потенциалы металлов IIА группы имеют отрицательные значения, что свидетельствует об их высокой восстановительной способности, которая закономерно возрастает с увеличением радиуса элементов.
Металлы IIА группы окисляются на воздухе, образуя оксиды: 2Э + 02 = 2ЭО; взаимодействуют с галогенами даже в обычных условиях: Э + Наl2 = ЭНаl2.
С менее активными неметаллами, такими, как азот, углерод, кремний, сера, металлы IIА группы взаимодействуют при нагревании:
ЗЭ + N2 = Э3N2
2Э + 2С = Э2С2
Э + S = 3S.
Все металлы II А группы, за исключением бериллия, взаимодействуют с водой с выделением водорода: Э + 2Н20 = Э(ОН)2 + Н2.
С магнием эта реакции идет при нагревании. Реакция бериллия и магния с водой термодинамически возможна и при комнатной температуре, но кинетически она затруднена из-за образования защитной оксидной пленки на поверхности металла. По свойствам и толщине пленка оксида бериллия сходна с Al2O3. Защитные свойства пленки MgO выражены слабее.
Металлы IIA группы легко растворяются даже в разбавленных кислотах (соляной, серной, уксусной и других), например: Э + 2НСl = ЭСl2 + Н2.
Бериллий, проявляя амфотерность, растворяется и в щелочах: Be + 2NaOH + 2H20 = Na2[Be(OH)4] + H2.
Оксиды элементов II А группы получаются при непосредственном взаимодействии металлов с кислородом, а также при термическом разложении гидроксидов, карбонатов, нитратов:
Э(ОН)2 = ЭО + Н20
ЭС03 = ЭО + С02
2Э(N03)2 = 2Э0 + 4N02 + 02.
Оксиды ЭО представляют собой устойчивые тугоплавкие вещества.
Все оксиды ЭО, за исключением оксида бериллия, обладают основными свойствами.
Оксиды щелочноземельных металлов взаимодействуют с водой, образуя сильные основания, хорошо растворимые в воде и называемые щелочами: ЭО + Н20 = Э(ОН)2.
Оксид магния MgO при комнатной температуре реагирует с водой медленно, давая слабое основание, малорастворимое в воде.
Оксид бериллия ВеО амфотерен с преобладанием основных свойств. Предварительно прокаленный оксид бериллия химически инертен, поэтому его используют в качестве огнеупорного материала при изготовлении реактивных двигателей, тиглей, а также в электротехнике.
В ряду гидроксидов элементов IIA группы основные свойства усиливаются в подгруппе сверху вниз. Гидроксид бериллия амфотерен и легко растворяется в кислотах и щелочах.
Растворимость солей щелочноземельных металлов ниже, чем у солей магния. По этой причине в живых организмах основным веществом костной и зубной тканей является гидроксоапатит, состоящий из ионов кальция и фосфат-ионов.
В ряду Be - Mg - Са - Sr - Ва прочность комплексных ионов уменьшается.
Способность бериллия образовывать более прочные комплексы проявляется в том, что он образует множество комплексных соединений со всеми известными лигандами, например: [Ве(NНз)4]2+; [BeF4]2+; [Be(CN)4]2+; [Be(CNS)4]2+; [Be(N03)4]2+ и другие.
Бериллий в отличае от щелочно-земельных металлов - твёрдый и хрупкий. На воздухе бериллий, подобно алюминию, покрывается плёнкой оксида, который делает этот металл химически неактивным.
При обычных условиях или при небольшом нагревании бериллий реагирует с галогенами: Be + Г2 = ВеГ2.
При нагревании бериллий сгорает на воздухе с образованием оксида ВеО, реагирует с серой и азотом с образованием сульфида BeS и нитрида Вe3N2, соответственно. С водородом металл непосредственно не реагирует.
Защитная оксидная плёнка делает бериллий даже при нагревании инертным по отношению к воде. Однако он легко растворяется в разбавленных кислотах, например, НСl, СН3СООН, H2S04: Be + 2HCl = BeCl2 + H2.
В водных растворах ион Be2+ существует в виде аквакомплекса [Ве(Н20)4]2+.