Диссертация (1105126), страница 25
Текст из файла (страница 25)
The single-pulse equations // Phys.Rev. A., 1987, Vol. 35, № 7, P. 2965–2975.116121. Kuwata-Gonokami M., Saito N., Ino Y., Kauranen M. et al. Giant Optical Activity in QuasiTwo-Dimensional Planar Nanostructures // Phys. Rev. Lett. 2005. Vol. 95, № 22, 227401 (4pages).122. Агранович В.М., Гартштейн Ю.Н. Пространственная дисперсия и отрицательноепреломление света // УФН, 2006, Т. 176, № 10, С.
1051-1068.123. Taflove A. Computational electrodynamics: the finite-difference time-domain method. 3rded. – Boston, Artech House, 2005.124. Agranovich V.M., Shen Y.R., Baughman R.H., Zakhidov A.A. Linear and nonlinear wavepropagation in negative refraction metamaterials // Phys. Rev. B., 2004, Vol. 69, № 16, 165112(7 pages).125.
Agranovich V.M., Gartstein Y.N. Electrodynamics of metamaterials and the Landau–Lifshitz approach to the magnetic permeability // Metamaterials, 2009, Vol. 3, № 1, P. 1–9.126. Merlin R. Metamaterials and the Landau-Lifshitz permeability argument: Large permittivitybegets high-frequency magnetism // Proceedings of the National Academy of Sciences, 2009,Vol. 106, № 6, P. 1693–1698.127. Silveirinha M.G., Baena J.D., Jelinek L., Marqués R. Nonlocal homogenization of an arrayof cubic particles made of resonant rings // Metamaterials, 2009, Vol. 3, № 3-4, P. 115–128.128. Perrins W.T., McPhedran R.C. Metamaterials and the homogenization of compositematerials // Metamaterials, 2010, Vol.
4, № 1, P. 24–31.129. Zhou J. Dong J., Wang B., Koschny T. et al. Negative refractive index due to chirality //Phys. Rev. B. 2009. Vol. 79, № 12, 121104 (4 pages).130. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. – Москва, Наука, 1982.131. Gedalin M., Scott T., Band Y.
Optical Solitary Waves in the Higher Order NonlinearSchrödinger Equation // Phys. Rev. Lett., 1997, Vol. 78, № 3. P. 448–451.132. Gromov E.M., Talanov V.I. Short optical solitons in fibers // Chaos, 2000, Vol. 10, № 3.P. 551-558.133. Kaplan A., Shkolnikov P.
Electromagnetic “Bubbles” and Shock Waves: Unipolar,Nonoscillating EM Solitons // Phys. Rev. Lett., 1995, Vol. 75, № 12, P. 2316–2319.134. Zhokhov P.A., Zheltikov A.M. Attosecond Shock Waves // Phys. Rev. Lett., 2013, Vol. 110,№ 18, 183903 (5 pages).135. Ishii N., Teisset C.Y., Köhler S., Serebryannikov E.E., et al. Widely tunable solitonfrequency shifting of few-cycle laser pulses // Phys. Rev. E., 2006, Vol. 74, № 3, 036617 (10pages).117136. Judge A.C., Bang O., Eggleton B.J., Kuhlmey B.T. et al. Optimization of the soliton selffrequency shift in a tapered photonic crystal fiber // J. Opt. Soc.
Am. B, 2009, Vol. 26, № 11.P. 2064-2071.137. Желтиков А.М. Комбинационное рассеяние света в фемто- и аттосекундной физике //УФН, 2011, Т. 54, № 1. С. 29–51.138. Brabec T., Krausz F. Nonlinear Optical Pulse Propagation in the Single-Cycle Regime //Phys. Rev. Lett., 1997, Vol. 78, № 17, P. 3282–3285.139. Ranka J.K., Gaeta A.L. Breakdown of the slowly varying envelope approximation in theself-focusing of ultrashort pulses // Opt. Lett., 1998, Vol. 23, № 7.
P. 534-536.140. Leblond H., Sanchez F. Models for optical solitons in the two-cycle regime // Phys. Rev. A,2003, Vol. 67, № 1, 013804 (8 pages).141. Kozlov S.A., Sazonov S.V. Nonlinear propagation of optical pulses of a few oscillationsduration in dielectric media // J. Exp. Theor. Phys., 1997, Vol. 84, № 2, P.
221–228.142. Mel’nikov I.V., Mihalache D., Moldoveanu F., Panoiu N.C. et al. Quasiadiabatic followingof femtosecond optical pulses in a weakly excited semiconductor // Phys. Rev. A., 1997, Vol. 56,№ 2, P. 1569–1576.143. Leblond H., Mihalache D. Few-optical-cycle solitons: Modified Korteweg–de Vries sineGordon equation versus other non–slowly-varying-envelope-approximation models // Phys.
Rev.A, 2009, Vol. 79, 063835 (7 pages).144. Leblond H., Sanchez F., Mel’nikov I.V., Mihalache D. Optical solitons in a few-cycleregime: Breakdown of slow-envelope approximation // Math. Comput. Simul., 2005, Vol. 69,P. 378–388.145. Rosanov N.N., Semenov V.E., Vysotina N.V. Few-cycle dissipative solitons in activenonlinear optical fibres // Quantum Electron., 2008, Vol. 38, № 2. P. 137–143.146.
Amiranashvili S., Bandelow U., Akhmediev N. Few-cycle optical solitary waves in nonlineardispersive media // Phys. Rev. A., 2013, Vol. 87, 013805 (8 pages).147. Leblond H., Mihalache D. Models of few optical cycle solitons beyond the slowly varyingenvelope approximation // Phys. Rep., 2013, Vol. 523, № 2. P. 61–126.148. Mel’nikov I.V., Leblond H., Sanchez F., Mihalache D. Nonlinear Optics of a Few-CycleOptical Pulse: Slow-Envelope Approximation Revisited // Quantum Electron., 2004. Vol. 10,№ 5. P.
870–875.149. Leblond H., Sazonov S.V., Mel’nikov I.V., Mihalache D., Sanchez F. Few-cycle nonlinearoptics of multicomponent media // Phys. Rev. A., 2006, Vol. 74, № 6, 063815 (8 pages).150. Leblond H., Mel’nikov I.V., Mihalache D. Interaction of few-optical-cycle solitons // Phys.Rev. A, 2008, Vol. 78, № 4, 043802 (5 pages).118151.
Weile D.S., Michielssen E. Genetic algorithm optimization applied to electromagnetics: areview // IEEE Trans. Antennas Propag., 1997, Vol. 45, № 3, P. 343–353.152. Leblond H., Triki H., Sanchez F., Mihalache D. Robust circularly polarized few-opticalcycle solitons in Kerr media // Phys. Rev. A.
2011. Vol. 83, № 6, 063802 (5 pages).153. Blow K.J., Wood D. Theoretical description of transient stimulated Raman scattering inoptical fibers // IEEE J. Quantum Electron., 1989, Vol. 25, № 12, P. 2665–2673.154. Brixner T., Gerber G. Femtosecond polarization pulse shaping // Opt. Lett., 2001, Vol. 26,№ 8, P. 557-559.155. Agranovič V.M., Ginzburg V.L. Spatial Dispersion in Crystal Optics and the Theory ofExcitons.
– Interscience Publishers, 1966.156. Golubkov A.A., Makarov V.A. Boundary conditions for an electromagnetic field on thesurface of linear and nonlinear crystals: Allowance for weak spatial dispersion and near-surfaceinhomogeneity of optical properties at the intermedium boundary // J. of Russian Laser research,1996, Vol. 17, № 5, P. 480–488.157. Golubkov A.A., Makarov V.A. Material equation for the polarization current on the surfaceof media with weak spatial dispersion // Laser Phys., 1996, Vol. 6, № 6, P.
1013–1017.158. Joseph R.M., Hagness S.C., Taflove A. Direct time integration of Maxwell’s equations inlinear dispersive media with absorption for scattering and propagation of femtosecondelectromagnetic pulses // Opt. Lett., 1991, Vol. 16, № 18, P. 1412-1414.159. Saad Y., Schultz M.H. GMRES: A Generalized Minimal Residual Algorithm for SolvingNonsymmetric Linear Systems // SIAM Journal on Scientific and Statistical Computing, 1986,Vol.
7, № 3, P. 856–869.160. Goorjian P.M., Taflove A. Direct time integration of Maxwell’s equations in nonlineardispersive media for propagation and scattering of femtosecond electromagnetic solitons // Opt.Lett., 1992, Vol. 17, № 3, P. 180-182.161. Голубков А.А., Макаров В.А. Граничные условия электромагнитного поля наповерхности сред со слабой пространственной дисперсией // УФН, 1995, Т.
165, № 3, С.339-346.162. Mitschke F.M., Mollenauer L.F. Discovery of the soliton self-frequency shift // Opt. Lett.1986. Vol. 11, № 10. P. 659-661.163. Веселаго В.Г.Электродинамикавеществсодновременноотрицательнымизначениями и . // УФН, 1968, Vol.
92, № 3. P. 517–526.164. Pendry J.B. Negative Refraction Makes a Perfect Lens // Phys. Rev. Lett., 2000, Vol. 85, №18, P. 3966–3969.119165. Fang N. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens // Science, 2005,Vol. 308, № 5721, P. 534–537.166. Zhang X., Liu Z. Superlenses to overcome the diffraction limit // Nature Materials, 2008,Vol. 7, № 6, P.
435–441.167. Pendry J.B. Controlling Electromagnetic Fields // Science, 2006, Vol. 312, № 5781, P.1780–1782.168. Schurig D., Mock J.J., Justice B.J., Cummer S.A. et al. Metamaterial Electromagnetic Cloakat Microwave Frequencies // Science, 2006, Vol. 314, № 5801, P. 977–980.169. Cai W., Chettiar U.K., Kildishev A.V., Shalaev V.M. Optical cloaking with metamaterials //Nature Photonics, 2007, Vol.
1, № 4, P. 224–227.170. Smith D., Padilla W., Vier D., Nemat-Nasser S., Schultz S. Composite Medium withSimultaneously Negative Permeability and Permittivity // Phys. Rev. Lett., 2000, Vol. 84, № 18,P. 4184–4187.171. Pendry J.B., Holden A.J., Stewart W.J., Youngs I. Extremely Low Frequency Plasmons inMetallic Mesostructures // Phys. Rev. Lett., 1996, Vol. 76, № 25, P. 4773–4776.172.
Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J. Magnetism from conductors andenhanced nonlinear phenomena // IEEE Trans. Microw. Theory Tech. 1999. Vol. 47, № 11. P.2075–2084.173. Yen T.J. Terahertz Magnetic Response from Artificial Materials // Science, 2004, Vol. 303,№ 5663, P. 1494–1496.174.