Диссертация (1104996), страница 28
Текст из файла (страница 28)
Vol. 5, no. 7.P. 1487–1490.61. Bjork M. T., Thelander C., Hansen A. E. et al. Few-Electron Quantum Dots inNanowires // Nano Letters. 2004. Vol. 4, no. 9. P. 1621–1625.62. Sapmaz S., Jarillo-Herrero P., Blanter Ya. M. et al. Tunneling in Suspended CarbonNanotubes Assisted by Longitudinal Phonons // Phys.
Rev. Lett. 2006. — Jan. Vol. 96.P. 026801.63. Leturcq R., Stampfer C., Inderbitzin K. et al. Franck–Condon blockade in suspendedcarbon nanotube quantum dots // Nature Physics. 2009. Vol. 5. P. 327–331.64. Cui J. B., Burghard M., Kern K. Room Temperature Single Electron Transistor byLocal Chemical Modification of Carbon Nanotubes // Nano Lett. 2002. Vol. 2, no. 2.P. 117–120.65. Ihn T., Guttinger J., Molitor F. et al. Graphene single-electron transistors // MaterialsToday. 2010. Vol.
13, no. 3. P. 44 – 50.66. Gonzalez J. W., Delgado F., Fernandez-Rossier J. Graphene single-electron transistor asa spin sensor for magnetic adsorbates // Phys. Rev. B. 2013. — Feb. Vol. 87. P. 085433.16167. Солдатов Е.С., Ханин В.В., Трифонов А.С. и др. Молекулярный одноэлектронныйтранзистор, работающий при комнатной температуре // УФН. 1998. Т. 168, № 2.С. 217–219.68.
Azuma Y., Suzuki S., Maeda K. et al. Nanoparticle single-electron transistor withmetal-bridged top-gate and nanogap electrodes // Appl. Phys. Lett. 2011. Vol. 99,no. 7. P. 073109.69. Stepanov A. S., Soldatov E. S., Snigirev O. V. Fabrication of integrated electrodesof molecular transistor by lithographic techniques and electromigration // Proc. SPIE,International Conference Micro- and Nano-Electronics 2012.2013.Vol. 8700.P. 87000C–5.70. Ho P. S., Kwok T. Electromigration in metals // Rep.
Prog. Phys. 1989. Vol. 52, no. 3.P. 301.71. Song H., Kim Y., Jang Y.H. et al. Observation of molecular orbital gating // Nature.2009. Vol. 462. P. 1039–1043.72. Danilov A., Hedeg V. Nanoelectromechanical Switch Operating by Tunneling of anEntire C60 Molecule // Nano Lett. 2008. Vol. 8, no. 8. P. 2393–2398.73. Pasupathy A.N., Park J., Chang C. et al.
Vibration-Assisted Electron Tunneling in C140Transistors // Nano Lett. 2005. Vol. 5, no. 2. P. 203–207.74. Champagne A.R., Pasupathy A.N., Ralph D.C. Mechanically Adjustable and ElectricallyGated Single-Molecule Transistors // Nano Lett. 2005. Vol. 5, no. 2. P. 305–308.75. Zhang X. A., Chi Y. Q., Fang J. Y. et al. Single electron transistor with programmabletunnelling structure // Phys. Lett. A.
2010. Vol. 374, no. 48. P. 4880–4884.76. Bernand-Mantel A., Seneor P., Bouzehouane K. et al. Anisotropic magneto-Coulombeffects and magnetic single-electron-transistor action in a single nanoparticle // Nat.Phys. 2009. Vol. 5, no. 12. P. 920–924.77. Sardar R., Funston A. M., Mulvaney P., Murray R. W. Gold Nanoparticles: Past, Present,and Future // Langmuir. 2009. Vol. 25, no. 24. P. 13840–13851.16278. Okabayashi N., Maeda K., Muraki T. et al. Uniform charging energy of single-electrontransistors by using size-controlled Au nanoparticles // Appl. Phys. Lett. 2012. Vol.
100,no. 3. P. 033101.79. Azuma Y., Kobayashi N., Chorley S. et al. Individual transport of electrons through achemisorbed Au nanodot in Coulomb blockade electron shuttles // J. Appl. Phys. 2011.Vol. 109, no. 2. P. 024303.80. Chaki N. K., Singh P., Dharmadhikari C. V., Vijayamohanan K. P. Single-ElectronChargingFeaturesofLarger,Dodecanethiol-ProtectedGoldNanoclusters:?Electrochemical and Scanning Tunneling Microscopy Studies // Langmuir.2004.Vol.
20, no. 23. P. 10208–10217.81. Negishi R., Hasegawa T., Tanaka H. et al. Size-dependent single electron tunneling effectin Au nanoparticles // Surface Science. 2007. Vol. 601, no. 18. P. 3907–3911.82. Aslam M., Chaki N.K., Mulla I.S., Vijayamohanan K. Preparation and electricalcharacterisation of dodecanethiol monolayer protected silver nanoclusters // Appl. Surf.Sci. 2001. Vol. 182, no. 3–4. P.
338–344.83. Polymeropoulos E. E., Sagiv J. Electrical conduction through adsorbed monolayers // J.Chem. Phys. 1978. Vol. 69, no. 5. P. 1836.84. Shiang J. J., Heath J. R., Collier C. P., Saykally R. J. Cooperative Phenomena in ArtificialSolids Made from Silver Quantum Dots: The Importance of Classical Coupling // J. Phys.Chem. B. 1998. Vol. 102, no. 18. P.
3425–3430.85. Osman H., Schmidt J., Svensson K. et al. STM studies of passivated Au nanocrystalsimmobilised on a passivated Au(111) surface: ordered arrays and single electrontunnelling // Chem. Phys. Lett. 2000. Vol. 330, no. 1–2. P. 1 – 6.86. Hattori S., Kano S., Azuma Y. et al. Coulomb blockade behaviors in individualAu nanoparticles as observed through noncontact atomic force spectroscopy at roomtemperature // Nanotechnology. 2012. Vol. 23, no.
18. P. 185704.87. Jana A., Singh N. B., Sing J.K., Sarkar S. K. Design and simulation of hybridCMOS–SET circuits // Microelectronics Reliability. 2013. Vol. 53, no. 4. P. 592–599.16388. Koppinen P.J., Stewart M.D., Zimmerman N.M. Fabrication and ElectricalCharacterization of Fully CMOS-Compatible Si Single-Electron Devices // ElectronDevices, IEEE Transactions on. 2013. Vol. 60, no. 1. P.
78–83.89. Aviram A., Ratner M. A. Molecular rectifiers // Chem. Phys. Lett. 1974. Vol. 29, no. 2.P. 277 – 283.90. Schoelkopf R. J., Wahlgren P., Kozhevnikov A. A. et al. The Radio-FrequencySingle-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer // Science.1998. Vol. 280, no. 5367. P. 1238–1242.91. Fujisawa T., Hayashi T., Hirayama Y. et al.
Electron counting of single-electron tunnelingcurrent // Appl. Phys. Lett. 2004. Vol. 84, no. 13. P. 2343–2345.92. Fujiwara A., Yamahata G., Nishiguchi K. et al. Silicon single-electron transfer devices:Ultimate control of electric charge // Silicon Nanoelectronics Workshop (SNW), 2012IEEE. 2012. P. 1–2.93. Guo Y.-D., Yan X.-H., Xiao Y. Computational Investigation of DNA Detection UsingSingle-Electron Transistor-Based Nanopore // J. Phys. Chem. C.
2012. Vol. 116, no. 40.P. 21609–21614.94. Yu C., Lee S.-W., Ong J. et al. Single Electron Transistor in Aqueous Media // AdvancedMaterials. 2013. P. 1–6.95. Kane J., Inan M., Saraf R. F. Self-Assembled Nanoparticle Necklaces Network ShowingSingle-Electron Switching at Room Temperature and Biogating Current by LivingMicroorganisms // ACS Nano. 2010.
Vol. 4, no. 1. P. 317–323.96. Ekinci K. L. Electromechanical Transducers at the Nanoscale: Actuation and Sensingof Motion in Nanoelectromechanical Systems (NEMS) // Small. 2005. Vol. 1, no. 8-9.P. 786–797.97. Knobel R. G., Cleland A. N. Nanometre-scale displacement sensing using a singleelectron transistor // Nature.
2003. Vol. 424, no. 6946. P. 291–293.98. Natelson D., Yu L.H., Ciszek J. W. et al. Single-molecule transistors: electron transfer inthe solid state // Chem. Phys. 2006. Vol. 324. P. 267–275.16499. Ralph D. C., Black C. T., Tinkham M. Spectroscopic Measurements of DiscreteElectronic States in Single Metal Particles // Phys. Rev. Lett. 1995. — Apr. Vol. 74.P. 3241–3244.100. Averin D.V., Korotkov A.N. Correlated single-electron tunneling via mesoscopic metalparticles: Effects of the energy quantization // J. Low Temp. Phys. 1990. Vol.
80.P. 173–185.101. Wasshuber C. Computational Microelectronics / Ed. by S. Selberherr. N.Y.: Springer,1998.102. Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. Москва:Высшая школа, 1979.103. Pekola J. P., Vartiainen J. J., Mottonen M. et al. Hybrid single-electron transistor as asource of quantized electric current // Nat. Phys. 2008. Vol. 4, no. 4. P. 120–124.104. Shorokhov V.V., Soldatov E.S., Snigirev O.V. Theoretical study of characteristics of amolecular single-electron transistor // Thin Solid Films. 2004. Vol.
464–465. P. 445–451.105. Шорохов В.В., Солдатов Е.С.Способ определения электрической емкостиуединенной наночастицы. 2008.106. Shorokhov V.V., Soldatov E.S., Elenskiy V.G. The method for the determination ofelectrical self-capacitance of the atomic and molecular scale objects // Micro- andNanoelectronics 2007. 2008. Vol. 7025, no. 1. P. 70250N.107.
Шорохов В.В., Солдатов Е.С., Губин С.П. Собственная емкость наноразмерныхобъектов // Радиотехника и электроника. 2011. Т. 56, № 3. С. 352–369.108. Stewart D. R., Sprinzak D., Marcus C. M. et al. Correlations Between Ground andExcited State Spectra of a Quantum Dot // Science.1997.Vol. 278, no. 5344.P. 1784–1788.109.
Andergassen S., Meden V., H. Schoeller. et al. Charge transport through single molecules,quantum dots and quantum wires // Nanotechnology. 2010. Vol. 21, no. 27. P. 272001.110. Тамм И.Е. Основы теории электричества. 11-е издание, Физматлит, 2003. С. 48–52,70–71, 76–79.165111. Ландау Л.Д., Лившиц Е.М. Электродинамика сплошных сред. Москва: "Наука 1982.112. Смайт В.Р. Электростатика и электродинамика. Москва: Издательство иностраннойлитературы, 1954.113. Зефиров Н С.
Химическая энциклопедия.Москва: Большая российскаяэнциклопедия, 1995. Т. 4. С. 411.114. Sapkov I. V., Soldatov E. S., Elensky V. G. Method of creation of monomoleculartransistor with overhanging electrodes // Proc. SPIE. 2008. Vol. 7025. P. 70250P.115. Каплан И.Г. Введение в теорию межмолекулярных взаимодействий. М.: Наука,1982.