Главная » Просмотр файлов » Диссертация

Диссертация (1104792)

Файл №1104792 Диссертация (Свойства корреляторов калибровочных теорий поля)Диссертация (1104792)2019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Московский государственный университет имени М.В. ЛомоносоваФизический факультетКафедра физики частиц и космологиина правах рукописиМорозов Андрей АлексеевичСвойства корреляторовкалибровочных теорий поляспециальность 01.04.02 — теоретическая физикаДиссертацияна соискание ученой степени кандидатафизико-математических наукНаучный руководитель:доктор, физ.-мат. наук,профессор Белокуров В.В.Москва 2014Оглавление1 Введение31.1Содержание диссертации .

. . . . . . . . . . . . . . . . . . . . . . . . .111.2Результаты, выносимые на защиту диссертации . . . . . . . . . . . . .142 Конформная теория поля162.1Теория свободных полей . . . . . . . . . . . . . . . . . . . . . . . . . .202.2Свободная теория с c 6= 1 . . . . . . . . . . . . . . . . . . . . . . . . . .212.3Корреляторы в свободной теории .

. . . . . . . . . . . . . . . . . . . .222.4Четырехточечный конформный блок . . . . . . . . . . . . . . . . . . .232.5Форма Шаповалова . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262.6Тройные вершины . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.272.6.1Тройные вершины Γ̄ . . . . . . . . . . . . . . . . . . . . . . . . .282.6.2Тройные вершины Γ . . . . . . . . . . . . . . . . . . . . . . . . .292.7Диаграммная техника . . . . . . . . . . . . . . . . . . . . . . . . . . . .292.8Подсчитанные тройные вершины . . . . . . . . .

. . . . . . . . . . . .302.9(3)алгебра . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312.9.1Тройные вершины в алгебре W (3) . . . . . . . . . . . . . . . . .352.9.2Вычисления в свободной теории поля . . . . . . . . . . . . . . .382.9.3Примеры тройных вершин . . . . . . .

. . . . . . . . . . . . . .50W3 АГТ-соотношение553.1Функция Некрасова . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553.2АГТ-соотношение для конформных блоков на сфере . . . . . . . . . .583.2.1U (1)-фактор . . . . . . . . . . . . . . . . . . . . . . . . . . . . .583.2.2Четырехточечный конформный блок . . . .

. . . . . . . . . . .583.2.3Пятиточечный конформный блок . . . . . . . . . . . . . . . . .603.2.4Шеститочечный конформный блок . . . . . . . . . . . . . . . .643.2.5n-точечный конформный блок . . . . . . . . . . . . . . . . . . .653.2.6Симметрии . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .6713.33.2.7Выбор диаграмм . . . . . . . . . . . . . . . . . . . . . . . . . . .683.2.8Явные вычисления для АГТ-соотношения . . . . . . . . . . . .69АГТ-соотношение для конформных блоков на торе .

. . . . . . . . . .723.3.173Предел больших масс . . . . . . . . . . . . . . . . . . . . . . . .4 Теория свободных полей и интегралы Сельберга754.22 +bNC̃αα11α+α22 +bNC̃αα11α+α2на втором уровне . . . . . . . . . . . . . . . . . . . . . . . .794.3Обобщение на высшие уровни . . . . . .

. . . . . . . . . . . . . . . . .804.4Переход от операторного разложения к конформному блоку . . . . .814.5Интегралы Сельберга и их обобщение . . . . . . . . . . . . . . . . . . .834.1на первом уровне . . . . . . . . . . . . . . . . . . . . . . . .775 Теория Черна-Саймонса855.1ХОМФЛИ в фундаментальном представлении . . .

. . . . . . . . . . .895.2Полиномы ХОМФЛИ торических узлов . . . . . . . . . . . . . . . . .905.3Обобщенные ХОМФЛИ и τ -функции . . . . . . . . . . . . . . . . . . .91τ -функции . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .915.3.15.3.25.4KСравнение H {t|t̄} и τ {t} . . . . . .

. . . . . . . . . . . . . . . .Цветные полиномы ХОМФЛИ для узла 41. . . . . . . . . . . . . . .92935.4.1ХОМФЛИ для произвольного антисимметричного представления 955.4.2Проверка цветного ХОМФЛИ . . . . . . . . . . . . . . . . . . .965.4.3Проверка гипотезы Оогури-Вафы. . . . . . . . .

. . . . . . .975.4.4Цветные суперполиномы узла-восьмерки . . . . . . . . . . . . .995.4.5Разностные уравнения на полиномы ХОМФЛИ и суперполиномы1026 Заключение1042Глава 1ВведениеКвантовая теория поля возникла в результате слияния квантовой механики и классической теории поля. Она, с одной стороны, включает в себя вероятностную картину мира и принцип неопределенности, а, с другой стороны, учитывает ограничения,связанные со специальной теорией относительности. Теории такого типа позволяютописать основные процессы, связанные с физикой элементарных частиц, атомнойфизикой и физикой твердого тела.Аппаратом квантовой теории поля из квантовой механики был заимствован такойважный принцип, как разделение величин на наблюдаемые и ненаблюдаемые.

Согласно данному принципу, любой величине, которую можно измерить, соответствуетнаблюдаемая теории, то есть среднее значение соответствующего ей оператора. Вквантовой теории поля средние значения такого типа соответствуют корреляционным функциям.

Таким образом, любые физические процессы в квантовой теорииполя описываются некоторыми корреляционными функциями (корреляторами). Врамках данной работы рассмотрены свойства корреляторов двух моделей квантовойтеории поля: трехмерной теории Черна-Саймонса и двумерной конформной теорииполя, а также связь последней с суперсимметричными теориями.Суперсимметричные теории в настоящее время широко изучаются в теоретической физике. Суперсимметрия — это симметрия, связывающая бозоны и фермионы— частицы с целыми и полуцелыми спинами соответственно, которые по этой причине описываются различными законами и распределениями.

Согласно этой гипотетической симметрии для каждого бозона (и квантового поля, ему соответствующего) существует парный ему фермион, и наоборот. Существование такой симметриибыло предположено в работах В.Акулова, Д.Волкова, Ю.Гольфанда и Е.Лихтмана[1, 2, 3, 4, 5]. Данная симметрия имеет очень широкое применение, как в теорииструн, так и в других областях теоретической физики, но экспериментальных свидетельств суперсимметрии в физике элементарных частиц пока не обнаружено. N = 23суперсимметричная теория, которая изучается при рассмотрения АГТ-соотношения,обладает двумя симметриями такого типа.В работе Н.Зайберга и Э.Виттена [6, 7] была подробно рассмотрена такая N = 2суперсимметричная теория Янга-Миллса.

Такая теория включает в себя четыре различных поля: два бозонных — векторное Aa и скалярное φa , и два фермионных —ψ a и λa . Такая теория описывается лагранжианомg 2 θ21µνL = 2 Tr − Fµν F +Fµν F̃ µν + (Dµ A)† Dµ A − 12 [A† , A]2 −g432π 2√√−iλσ µ Dµ λ̄ − iψ̄σ̄ µ Dµ ψ − i 2[λ, ψ]A† − i 2[λ̄, ψ̄]A .1(1.1)Из-за наличия суперсимметрии эффективное низкоэнергетичное действие такой теории всегда можно представить с помощью голоморфной функции F, называемойпрепотенциалом: Z11400200µνµνS=Im d xTr F (φ)|∂µ φ| + F (φ) −Fµν (F − iF̃ ) + .

. . .4π4(1.2)Специфика N = 2 суперсимметричной теории состоит, в том числе, в наличии в нейдуальности. Математически эта дуальность выражается формулойφD =∂F(φ)∂FD (φD ); φ=,∂φ∂φD(1.3)где φD — формально введенное, согласно этой формуле, дуальное поле.Помимо известной ранее формулы для препотенциала, рассчитанной по теориивозмущений,i 2 φ2φ ln 2(1.4)Fpert (φ) ∼2πΛН.Зайберг и Э.Виттен также предложили метод, позволяющий получить точное выражение для препотенциала, не требующий теоретико-полевых вычислений.

Проблема теоретико-полевых вычислений такого точного выражения состоит в необходимости учета инстантонных поправок. Инстантоны не являются минимумом действия,то есть решениями классических уравнений движения в теориях со спонтанным нарушением симметрии (тогда как ответ строится для некоторого вакуумного среднегоa, то есть в теории со спонтанно нарушенной симметрией). Это приводит с сингулярности инстантонных вкладов.Один из вариантов регуляризации этой сингулярности был рассмотрен А.Лосевым,Г.Муром, Н.Некрасовым и С.Шаташвили [8, 9, 10]. Суть примененного ими подходак вычислению инстантонных поправок состоит в том, что производится деформациятеории Зайберга-Виттена с помощью двух дополнительных параметров 1 и 2 . При4этом оказывается возможным посчитать интеграл по всем инстантонным состояниям, который выражается так называемой функцией Некрасова.Четырехмерная N = 2 суперсимметричная теория вызывает в последнее времяособый интерес в связи с ее предполагаемой связью с двумерной конформной теорией.

Характеристики

Тип файла
PDF-файл
Размер
1,01 Mb
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее