Главная » Просмотр файлов » Отзыв оппонента 2

Отзыв оппонента 2 (1104790)

Файл №1104790 Отзыв оппонента 2 (Свойства корреляторов калибровочных теорий поля)Отзыв оппонента 2 (1104790)2019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Отзыв официального оппонента на диссертацию Морозова Андрея Алексеевича Свойства корреляторов калибровочных теорий полл представленную на соискание ученой степени кандидата физико-математических наук по специальности 01.04.02 — теоретическая физика Нс будет преувеличением сказать, что применение методов двумерных теорий и особенно конформных теорий поля в реалистических четырехмерных теориях представляет на сегодняшний день основное направление развития теоретической физики. В частности, соотношение Алдая-Гайотто-Тачикавы, связывающее суперсимметричные четырехмерные теории с корреляционными функциями специальных двумерных конформных теорий, уже привело к построению принципиально новых взаимосвязей между этими двумя теориями и другими моделями теоретической физики тина, бета-ансамблей, рассотрению которых в частности посвящена диссертационная работа Андрея Морозова.

Во второй главе рассмотрена конформная теория поля. В том числе, приведена процедура вычисления корреляторов конформной теории и, соответственно, конформных блоков, описывающих их голоморфную часть. Согласно такой процедуре конформные блоки описываются как произведение корреляторов двух и трех полей. В данной главе описаны свойства таких двух- и трехточечных корреляторов К оригинальным результатам относятся соотношения рекурсии для трехточечных корреляторов в конформной теории с алгеброй И'~з~ На мой взгляд к числу наиболее интересных результатов относятся результаты третьей главы, в которой рассмотрено соотношение Алдая-Гайотто-Тачикавы (АГТ) между конформной и суперсимметричной теориями. Согласно гипотезе АГТ конформный блок равен инстантонной части статистической суммы четырехмерной суперсимметричной теории.

Эта гипотеза проверена для корреляторов четырех, пяти и гпести гюлей на двумерной сфере и одного поля па двумерном торе. В случае двумерной сферы было рассмотрено соотношение АГТ в первых трех порядках разложеш~я по пертурбативному параметру. Рассмотренные случаи позволили также сделать вывод о выполнении гипотезы АГТ для произвольного числа полей на двумерной сфере в первых трех порядках разложения Отметим'цолученное выражение для предела болыной размерности поля для конформного блока.

С точки зрения суперсимметричной теории в таком пределе выражения для одного поля на двумерном торе и четырех полей на двумерной сфере должны совпадать, что и было проверено. В четвертой главе рассмотрена процедура вычисления корреляторов конформной теории с помощью теории свободных скалярных полей. В такой теории корреляторы не равны нулю только если размерности входящих в них полей связаны законом сохранения. Этот закон сохранения можно деформировать Для этого в коррелятор добавляют экранирующие поля Доценко-Фатеева, что приводит к представлению бета- ансамбля для конформного блока, который при этом выражается через интегралы сложного вида представляющие собой обобщения интегралов Сельберга.

Вычисление таких интегралов в общем виде оказыватеся сложной и до сих пор не решенной задачей, поэтому проверка гипотезы АГТ производится на различных характерных примерах или же в различных разложениях по параметрам задачи. В данной главе проверено, что в первых трех порядках разложения по непертурбативному параметру корреляторы и структурные константы, посчитанные с помощью представления бета;ансамбля, действительно равны посчитанным с помощью общих конформных свойств.

В пятой главе рассмотрена трехмерная теория Черна-Саймонса и связанная с ней теория узлов. В частности, приводится процедура вычисления инвариантов узлов, равных вильсоновским средним теории Черна-Саймонса, основанная на применении В;матриц и теории представлений. При использовании такого подхода поли- номы выражаются посредством разложения по характерам неприводимых представлений группы ЯЦУ). В данной главе также приводится выражение для полиномов ХОМФЛИ торических узлов. Для торических узлов полиномы известны для любого представления группы ЯЦМ). Это позволяет рассмотреть производящую функцию таких полиномов, то есть сумму таких полиномы в различных представлениях с коэффициентами, равными соответствующим характерам. Разложение по характерам применяется также при рассмотрении теории интегрируемых систем.

Так, оказывается возможным сравнить производящие функции полиномов ХОФЛИ и тау-функции иерархии Кадомцева-Петвиашвили. В данной главе доказано, что такие производящие функции для торических узлов являются тау-функциями, то есть они удовлетворяют билинейным соотношениям Хироты. Все заявленные результаты оригинальны и интересны. Соискатель проявид себя как перспективный исследователь, диссертационная работа которого создает хороший задел для дальнейших исследований соотношения АГТ и связанных с ним теорий квантовых поверхностей, а также исследований многочлспом ХОМФЛИ для неторических узлов.

К мелким недостаткам можно отнести некоторую лапидарность стиля. Это никоим образом не снижает высокой оценки данной работы, а соискатель — Андрей Адексеевич Морозов — бесспорно заслуживает присуждения искомой степени кандидата физико-математических наук. Л. О Чехов Доктор физико-математических наук в.н.с. Математического института им. В.А Стеклова РАН, 119991, г. Москва, ул. е-ша11;сЬеИюч©пй.гав Подпись Л.О.Чехова Зав. Отдела кадров МИАН В. И. Высоцкая .

Характеристики

Тип файла
PDF-файл
Размер
276,06 Kb
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее