Диссертация (1104762), страница 19
Текст из файла (страница 19)
et al. First Cooling Below 0.1 K of the NewGravitational-Wave Antenna ”Nautilus” of the Rome Group // Europhysics Letters. — 1991. — Vol. 16, no. 3. — p. 231. doi:10.1209/0295-5075/16/3/002.[26] Asztalos S. J., Carosi G., Hagmann C. et al. SQUID-Based Microwave CavitySearch for Dark-Matter Axions // Physical Review Letters. — 2010. — Vol. 104,no. 4. — p. 041301.
doi:10.1103/PhysRevLett.104.041301.[27] Bradley R., Clarke J., Kinion D., Rosenberg L. J., van Bibber K., Matsuki S.,Mück M., Sikivie P. Microwave cavity searches for dark-matter axions // Reviews of Modern Physics. — 2003. — Vol. 75, no. 3. — pp. 777–817.doi:10.1103/RevModPhys.75.777.104[28] Kirtley J. R., Kalisky B., Bert J. A.
et al. Scanning SQUID susceptometry ofa paramagnetic superconductor // Physical Review B. — 2012. — Vol. 85,no. 22. — p. 224518. doi:10.1103/PhysRevB.85.224518.[29] Voitovych I. D., Primin M. A., Sosnytskyy V. N. Application of SQUIDs for registration of biomagnetic signals // Low Temperature Physics. — 2012. — Vol. 38,no. 4. — pp. 311–320. doi:10.1063/1.3699954.[30] Kelso N., Lee S.-K., Bouchard L.-S., Demas V., Mück M., Pines A., Clarke J.Distortion-free magnetic resonance imaging in the zero-field limit // Journalof Magnetic Resonance. — 2009.
— Vol. 200, no. 2. — pp. 285 – 290.doi:10.1016/j.jmr.2009.07.016.[31] Koch H. Recent advances in magnetocardiographyelectrocardiology. —2004. —Vol. 37 Suppl. —doi:10.1016/j.jelectrocard.2004.08.035.//Journal ofpp. 117–22.[32] Rombetto S., Granata C., Vettoliere A., Russo M. Multichannel System Based ona High Sensitivity Superconductive Sensor for Magnetoencephalography // Sensors. — 2014. — Vol. 14, no. 7. — pp. 12114–12126. doi:10.3390/s140712114.[33] Schmelz M., Stolz R., Zakosarenko V., Schönau T., Anders S., Fritzsch L.,Mück M., Meyer H.-G. Field-stable SQUID magnetometer with sub-fT Hz−1/2resolution based on sub-micrometer cross-type Josephson tunnel junctions // Superconductor Science and Technology.
— 2011. — Vol. 24, no. 6. — p. 065009.doi:10.1088/0953-2048/24/6/065009.[34] Clarke J. SQUID fundamentals, SQUID sensors: Fundamentals, Fabrication andApplications / Ed. by H Weinstock. — Dordrecht : Kluwer–Academic, 1996. —Vol. 329 of NATO ASI Series E: Applied Sciences. — p. 1–62.[35] Clarke J., Braginski A. The SQUID Handbook: Fundamentals and Technologyof SQUIDs and SQUID Systems.
— Wiley, 2006. — Vol. 1. — ISBN: 978-3527-60458-6.[36] Fagaly R. L. Superconducting quantum interference device instruments and applications // Review of Scientific Instruments. — 2006. — Vol. 77, no. 10.doi:10.1063/1.2354545.105[37] Kleiner R., Koelle D., Ludwig F., Clarke J. Superconducting quantum interference devices: State of the art and applications // Proceedings of the IEEE. —2004. — Vol. 92, no. 10. — pp. 1534–1548. doi:10.1109/JPROC.2004.833655.[38] Nishijima S., Eckroad S., Marian A. et al.
Superconductivity and the environment: aВ Roadmap // Superconductor Science and Technology. — 2013. —Vol. 26, no. 11. — p. 113001. doi:10.1088/0953-2048/26/11/113001.[39] Clarke J., Wilhelm F. K. Superconducting quantum bits // Nature. — 2008. —Vol. 453, no. 7198. — pp. 1031–1042. doi:10.1038/nature07128.[40] Michotte S. Qubit dispersive readout scheme with a microstrip superconductingquantum interference device amplifier // Applied Physics Letters.
— 2009. —Vol. 94, no. 12. — p. 122512. doi:10.1063/1.3109793.[41] Serban I., Plourde B. L. T., Wilhelm F. K. Quantum nondemolition-like fast measurement scheme for a superconducting qubit // Physical Review B. — 2008. —Vol. 78, no. 5. — p. 054507. doi:10.1103/PhysRevB.78.054507.[42] Tanaka H., Sekine Y., Saito S., Takayanagi H.
Dc SQUID sensitivity for readoutof entangled state quantum bits // Superconductor Science and Technology. —2001. — Vol. 14, no. 12. — p. 1161. doi:10.1088/0953-2048/14/12/339.[43] Josephson B. Possible New Effects in Superconducting Tunnelling // PhysicsLetters. — 1962. — Vol. 1. — p. 251–253. doi:10.1016/0031-9163(62)91369-0.[44] Anderson P., Rowell J. Probable Observation of the Josephson SuperconductingTunneling Effect // Physical Review Letters. — 1963. — Vol. 10.
— p. 230–232.doi:10.1103/PhysRevLett.10.230.[45] Shapiro S. Josephson Currents in Superconducting Tunneling: The Effect ofMicrowaves and Other Observations // Physical Review Letters. — 1963. —Vol. 11. — p. 80–82. doi:10.1103/PhysRevLett.11.80.[46] Bardeen J., N. C. L., Schrieffer J. R. Microscopic Theory of Superconductivity // Physical Review.
— 1957. — Vol. 106. — p. 162–164.doi:10.1103/PhysRev.108.1175.106[47] Cooper L. Bound Electron Pairs in a Degenerate Fermi Gas // Physical Review. — 1956. — Vol. 104. — p. 1189–1190. doi:10.1103/PhysRev.104.1189.[48] Гинзбург В.Л., Ландау Л.Д. К теории сверхпроводимости. // ЖЭТФ. —1950. — Т. 20. — с. 1064–1081.[49] McCumber D. Effect of ac Impedance on dc Voltage-Current Characteristics ofSuperconductor Weak-Link Junctions // Journal of Applied Physics. — 1968. —Vol.
39. — p. 3113–3118. doi:10.1063/1.1656743.[50] Stewart W. Current-voltage Characteristics of Josephson Junctions // AppliedPhysics Letters. — 1968. — Vol. 12. — p. 277–280. doi:10.1063/1.1651991.[51] Ахманов С. А., Е. Дьяков Ю., С. Чиркин А. Статистическая радиофизика иоптика. Случайные колебания и волны в линейных системах. — М. : Физматлит, 2010. — С.
428. — ISBN: 978-5-9221-1204-8.[52] Drung D. Advanced SQUID read-out electronics / Ed. by H Weinstock. — Dordrecht : Kluwer–Academic, 1996. — Vol. 329 of NATO ASI Series E: AppliedSciences. — p. 63–116.[53] Nichols D. G., Dantsker E., Kleiner R., Muck M., Clarke J. Linearity of highTc dc superconducting quantum interference device operated in a flux-lockedloop // Journal of Applied Physics. — 1996.
— Vol. 80, no. 10. — pp. 6032–6038. doi:10.1063/1.363603.[54] Hilbert C., Clarke J. DC SQUIDs as radiofrequency amplifiers // Journal ofLow Temperature Physics. — 1985. — Vol. 61, no. 3-4. — pp. 263–280.doi:10.1007/BF00681635.[55] Tanaka M., Matsuzaki F., Kondo T. et al. Prototypic design of the single-fluxquantum microprocessor, CORE1 // Superconductor Science and Technology.
—2003. — Vol. 16, no. 12. — p. 1460. doi:10.1088/0953-2048/16/12/031.[56] Hayakawa H., Yoshikawa N., Yorozu S., Fujimaki A. Superconducting digitalelectronics // Proceedings of the IEEE. — 2004. — Vol. 92, no. 10. — pp. 1549–1563. doi:10.1109/JPROC.2004.833658.107[57] Nakajima N., Matsuzaki F., Yamanashi Y. et al. Design and implementation ofcircuit components of the SFQ microprocessor, CORE1 // Superconductor Science and Technology. — 2004. — Vol. 17, no.
3. — p. 301. doi:10.1088/09532048/17/3/001.[58] Tanaka M., Kondo T., Sekiya A. et al. Component test toward single-fluxquantum processors // Physica C: Superconductivity. — 2003. — Vol. 392–396,Part 2. — pp. 1490 – 1494. doi:10.1016/S0921-4534(03)00749-4.[59] Dorojevets M., Bunyk P., Zinoviev D. FLUX chip: design of a 20-GHz 16-bitultrapipelined RSFQ processor prototype based on 1.75- mu;m LTS technology //IEEE Transactions on Applied Superconductivity. — 2001.
— Vol. 11, no. 1. —pp. 326–332. doi:10.1109/77.919349.[60] Dorojevets M. An 8-bit FLUX-1 {RSFQ} microprocessor built in 1.75-Ојm technology // Physica C: Superconductivity. — 2002. — Vol. 378-381, Part 2. —pp. 1446 – 1453. doi:10.1016/S0921-4534(02)01755-0.[61] Dorojevets M., Bunyk P. Architectural and implementation challenges in designing high-performance RSFQ processors: a FLUX-1 microprocessor and beyond // IEEE Transactions on Applied Superconductivity. — 2003. — Vol.
13,no. 2. — pp. 446–449. doi:10.1109/TASC.2003.813893.[62] Bunyk P., Leung M., Spargo J., Dorojevets M. Flux-1 RSFQ microprocessor:physical design and test results // IEEE Transactions on Applied Superconductivity. — 2003. — Vol. 13, no. 2. — pp. 433–436. doi:10.1109/TASC.2003.813890.[63] Filippov T., Dorojevets M., Sahu A., Kirichenko A., Ayala C., Mukhanov O. 8-BitAsynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit // IEEE Transactions on Applied Superconductivity. — 2011.
— Vol. 21, no. 3. — pp. 847–851.doi:10.1109/TASC.2010.2103918.[64] Filippov T., Znosko M. Time characteristics of a Josephson-balanced comparator // Superconductor Science and Technology. — 1999. — Vol. 12, no. 11. —p. 776. doi:10.1088/0953-2048/12/11/325.[65] Haddad T., Wetzstein O., Engert S., Toepfer H., Ortlepp T. Investigation of therelationship between the gray zone and the clock frequency of a Josephson com-108parator // Superconductor Science and Technology. — 2011. — Vol. 24, no. 9. —p.
095010. doi:10.1088/0953-2048/24/9/095010.[66] Ebert B., Mielke O., Kunert J., Stolz R., Ortlepp T. Experimentally verified designguidelines for minimizing the gray zone width of Josephson comparators // Superconductor Science and Technology. — 2010. — Vol. 23, no. 5. — p. 055005.doi:10.1088/0953-2048/23/5/055005.[67] Ebert B., Ortlepp T. Optimization of Josephson Junction Comparators in Termsof Speed and Accuracy // IEEE Transactions on Applied Superconductivity.
—2011. — Vol. 21, no. 3. — pp. 687–692. doi:10.1109/TASC.2010.2089666.[68] Ulversoy T. Software Defined Radio: Challenges and Opportunities // Communications Surveys Tutorials, IEEE. — 2010. — Vol. 12, no. 4. — pp. 531–550.doi:10.1109/SURV.2010.032910.00019.[69] De Escobar A., Mukhanov O., Hitt R., Littlefield W. High Performance HF-VHFAll Digital RF Receiver Tested at 20 GHz Clock Frequencies // Military Communications Conference, 2006. MILCOM 2006. IEEE.













