Влияние свободной конвекции на параметры стационарных неравновесных систем в средах с объемным энерговыделением (1102606), страница 3
Текст из файла (страница 3)
О,О 0,5 1,0 1,5 20 2,5 3,0 3,5 4,0 4,5 9~ Рис.б — Зависимость параметра Франк-Каменецкого от максимальной температуры в цилиндре при различных энергетических характеристиках обратных процессов Влияние конвекции сказывается больше всего в области теплового взрыва, т.е. в районе первого максимума Ьф). При низких и высоких температурах кривые на рисунке 6 практически совпадают.
Хотя максимальное 15 изменение параметра О в области теплового взрыва составляет около 20%, эффект этого изменения оказывается значительным, поскольку множитель Ь стоит в экспоненте, Ьр — 10, поэтому даже при небольшом изменении О происходит существенное изменение величины энерговклада. В т етьей главе рассматривается задача расчета параметров положительного столба тлеющего разряда с учетом уравнений гидродинамики.
Разряд рассматривается в горизонтальном цилиндре вдоль оси этого цилиндра. В пайагйаще 3,! кратко обсуждаются особенности тлеющего разряда и обосновывается постановка решаемых задач. Вяраграб33 3 посвящен постановке задачи, построению математической модели и численному моделированию гидродинамических процессов в плазме газового разряда.
В параграфе 3.3 проводится анализ результатов. В цилиндре без учета конвекции тепло по механизму теплопроводности отводится к стенкам, которые имеют комнатную температуру. Температура газа равномерно спадает от оси к стенкам. Плотность потока тепла в стенки в этом случае равна — Я(дТ~дг~1. Но картина совершенно меняется, если учитывается конвекция. В таком случае уже нельзя рассматривать одномерную задачу.
Профиль температуры существенно меняется. На рисунке 7 представлено распределение температуры на оси цилиндра без учета и с учетом конвекции при разных значениях тока. Как видно из рисунка, в случае отсутствия конвекции температура имеет вид колокола, симметричного относительно центра, с максимумом в нем. С ростом тока температура растет, и колокол стягивается к центру — энерговыделение происходит в узком столбе, и, наконец, при некотором значении тока происходит контракция, стягивание столба в шнур. В случае же с конвекцией максимум температуры смещается вверх цилиндра.
При этом с ростом тока наблюдается также исчезновение симметрии 17 самого распределения. С ростом энерговклада, то есть с увеличением тока, конвекция снижает максимальную температуру газа по сравнению со случаем отсутствия конвекции. Т,К Рис. 7 — Распределение температуры на оси цилиндра без учета (сплошные кривые 1, 2, 3) и с учетом конвекции (пунктирные кривые 1а, 2а, За) при разных значениях тока 1 — бмА, 2 — 10мА, 3 — 17мА, р= 75 Тор. На рисунке 8 показаны относительные радиальные распределения плотности электронов. Из рисунка 8 видно, что с ростом тока токовый канал, который характеризуется профилем плотности числа электронов Л~,, резко сжимается.
Полуширина шнура изменяется с 64% до 14% от диаметра трубки. В тоже время расчет при наличии конвекции приводит к изменению не только формы, 18 но и местоположения максимума кривой. Полуширина при этом меняется с 64 % до 5% от диаметра трубки. О,О Рис. 8 — Относительные радиальные распределения плотности электронов У,/У,„„,, без учета (сплошные кривые 1, 2, 3) и с учетом конвекции (пунктирные кривые 1а, 2а, За ) при разных значениях тока 1 — бмА, 2 — 10мА, 3 — 17мА, р= 75 Тор. Установлено, что процессы конвекции, то есть гидродинамического переноса, существенны как для теплопроводности, так и для амбиполярной диффузии. В точках максимальной скорости конвекция эффективней молекулярного переноса в 30-40 раз: ч раЮ', В„ЛУ,, где В - коэффициент амбиполярной диффузии.
Как известно, числа Рэлея зависят от давления (плотности) и разности температур. Отсюда следует, что существует некоторая область влияния конвекции. На рисунке 9 представлена зависимость электрического поля Е от разрядного тока 1 в неоне без учета и с учетом конвекции для различных давлений, а также кривая, отделяющая две области. Область 1 — область, в которой конвекция не играет роли. Область 11 — область, где конвекция играет существенную роль, изменяя параметры разряда.
Рис. 9 — Зависимость электрического поля Е от разрядного тока 1 в неоне без учета и с учетом конвекции для различных давлений. Эксперилгентальные данные из работы 1'олубовскигг Ю. Ь'., Зинченко А. К., Каган Ю. М, — ЖТФ, 1977, т. 47, с. 1478. Область 1 — влияние конвекции сказывается слабо, область П --влиянием конвекции пренебречь нельзя.
Кривая, разделяющая области, соотвепгствуепг Яа = 500. Данная кривая показывает, что число Рэлея очень точно определяет параметры задачи, поскольку примерно соответствует величине Наг =500. 20 Расчетные кривые, выполненные с учетом и без учета конвекции, начинают разделяться. Можно наблюдать, что при невысоком давлении (25 Тор) конвекция начинает влиять только при больших значениях тока.
Это объясняется сильным влиянием диффузии. В то же время, при давлениях порядка 100 Тор конвекция начинает оказывать влияние при небольших токах. Из рисунка 9 также видно, что с увеличением тока влияние конвекции растет, и поэтому невозможно точное моделирование задачи без учета конвекции.
В настоящее время существует целый ряд работ, где данные кривые моделируются с точностью до нескольких процентов (см. например, Ре1гоч Сг.М., Гегге1га С.М. РЬуз. Кеч., 1999, Е 59, р. 3571), однако теплоотвод и диффузия учитываются с помощью простейших моделей. Анализ, проведенный в данной работе, показывает, что такие расчеты дают только порядки величин. Хотя сам процесс контракции разряда связан с зависимостью ионизации от концентрации электронов, однако форма вольт-амперных характеристик в области повышенных давлений существенно меняется за счет конвекции.
Основная цель данной работы состояла в том, чтобы показать, что учет газодинамических процессов (причем строгий учет!) необходим. Отметим, что режимы контракции, гистерезис и другие явления протекают в условиях существенного влияния конвекции. В заключении сформулированы основные результаты и выводы. 3 ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 1. Разработана математическая модель, описывающая двумерную конвекцию в системе горизонтальных и вертикальных коаксиальных цилиндров при объемном энерговыделении. Разработан алгоритм и реализована программа расчета гидродинамических параметров среды.
2. Проведено численное моделирование параметров газодинамической среды в системе горизонтальных коаксиальных цилиндров. Впервые определена критическая поверхность 11а~ (Ла,о-), отделяющая разные режимы конвекции, которая обобщает ранее известные результаты при 11а~ =О. Показано, что в исследуемом диапазоне чисел Рэлея в зависимости от параметров задачи реализуется два варианта двумерных течений — одно- и двухвихревые.
3. Рассмотрена конвекция в горизонтальном цилиндре с постоянным энерговыделением и проведено сравнение значений максимально достижимых температур для цилиндра и системы коаксиальных цилиндров при горизонтальном расположении. Показано, что увеличение энерговклада приводит в случае простой цилиндрической геометрии к уменьшению максимальной температуры по сравнению со случаем отсутствия конвекции, в то время как в системе коаксиальных цилиндров при небольших радиусах внутреннего цилиндра конвекция приводит к увеличению максимальной температуры.
4. Рассмотрена конвекция в вертикальном цилиндре и в системе коаксиальных цилиндров при вертикальном расположении с постоянным энерговыделением. Показано, что только при очень малых высотах цилиндра можно получить конвективное охлаждение, однако такая геометрия несовместима с конструкцией лазера, поскольку длина активной зоны между зеркалами оказывается очень малой. Установлено, что учет конвекции гг приводит к незначительному снижению температуры в цилиндре, по сравнению со случаем отсутствия конвекции. Хотя, начиная с удвоенного отношения длины цилиндров к его диаметру, максимальные температуры в одной и другой системе будут практически одинаковыми.
5. Построена математическая модель теплового взрыва в горизонтальном цилиндре и системе коаксиальных цилиндров при объемном энерговыделении и реализована программа расчета гидродинамических параметров среды. Решена задача о тепловом взрыве с учетом естественной конвекции и обратных эндотермических реакций. Показано, что для случая коаксиальных цилиндров наличие конвекции не влияет на параметры возникновения взрыва. Показано, что для горизонтального цилиндра конвекция особенно сильно влияет на параметры системы именно в области теплового взрыва, что указывает на необходимость учета конвективного теплоотвода при любых расчетах газовых лазеров и разрядов.
6. Впервые проведено строгое решение задач расчета параметров положительного столба тлеющего разряда с учетом гидродинамического движения (уравнений газодинамики). Показано, что конвекция существенно меняет свойства разряда вблизи зоны контракции. В результате исследований показано, что уточненные модели, учитывающие достаточно сложные кинетические схемы, но использующие упрощенный анализ теплопроводности и диффузии, не принимающие во внимание конвекцию, следует признать достаточно грубыми, а привязанные к эксперименту константы необходимо корректировать с учетом конвективных процессов.
4 ПУБЛИКАЦИИ Содержание диссертации отражено в следующих работах: 1. КозсЬ|па (ЯаЫ~агоча) Ь1.А., 1Л агоъ. А.Ч., Оз1роч А.1. Ь1аШга1 сопъес6оп ш ап аппп1из Ьегчееп соах1а1 Ьог1уопга1 су1шг1егз ъчгЬ 1пгегпа1 Ьеа1 депега6оп // 1п1. 1. оТ Неа1 Мазз Тгапз(ег. 2005, ~. 48, р. 4518-4525 2. Осипов А.И., Уваров А.В., Винниченко Н.А., Рощина (Сахарова) Н.А. Нелинейные задачи гидродинамики: вихревые структуры в неравновесном газе // Нелинейный мир, 11я 1-2, т.3, 2005. с. 40-47 3. Ояроч А 1, Ычагоч А.Ч., ВозсЬ1па (ЯаИ~агоъа) Ь1.А. 1п1пепсе о1 па1ига1 сопчесг1оп оп 1Ье рагаше1егз о1 ГЬеппа1 ехр1оз1оп ш 1Ье Ьог1лоп1а1 су1шс1ег // 1п1 ..1.
о1 Неа1 Мазз Тгапз(ег, 2007, ч. 50, р. 522б — 5231 4. Оз1роь А.1., 1Лагоч А.Ч., Чшп1сЬеп1со М.А., КозсЬ1па (Ба1сЬагоъа) Ь1.А. Чог1ех з1гисбзгез 1п а поп-ес1пйЬг1пш 8аз // Мыза 1п1егпа11опа1 Со11оцп1иш оп РЬуз1сз о1' зЬос1с чат~ез, сошЬпзг1оп, йе1опаг1оп апс1 поп ес1н111Ьг1пш ргосеззез, М1С 2005, МшЖ р. 139-140 5. Рощина (Сахарова) Н.А. Свободная конвекция в полости между горизонтальными коаксиальными цилиндрами при объемном энерговыделении // Международная конференция студентов и аспирантов и молодых ученых по фундаментальным наукам «Ломоносов - 2004», секция Физика, с 176 б. Осипов А.И., Уваров А.В., Рощина (Сахарова) Н.А. Влияние свободной конвекции на теплоотвод в газовых лазерах // Х1 Российская конференция по теплофизическим свойствам веществ. Материалы докладов и сообщений.
Т.Ц Санкт-Петербург, Россия 2005, с. 52 7. Мукин Р.В., Осипов А.И., Рощина (Сахарова) Н.А., Уваров А.В. Гидродинамическая устойчивость в неравновесных газовых системах с энерговыделением при разных способах теплоотвода // 1Х Всероссийский съезд 24 по теоретической и прикладной механике. Аннотации докладов.
Т.П Нижний Новгород: Изд-во Нижегородского госуниверситета им.Н.И. Лобачевского, 2006, с. 135 8. Рощина (Сахарова) Н.А., Уваров А.В.. Влияние естественной конвекции на возникновение теплового взрыва в неравновесной газовой среде 0 Необратимые процессы в природе и технике: Труды 4 всероссийской конференции 29-31 января 2007г. — М.: МГТУ им. Н.Э.Баумана, ФИАН 2007, с. 234-237 25 .