Текст лекций «Мировой и российский мембранный рынок». Содержание (1094690), страница 11
Текст из файла (страница 11)
Рис. 18. Схемы получения полого волокна методом мокрого формования:
1 – растворопровод; 2 – трубопровод для подачи газа (жидкости); 3 – фильера;
4 – осадительная ванна; 5 – нить; 6 – устройство для отжига;
7 – устройство для импрегнирования; 8 – сушилка; 8 - бобина
Тщательно профильтрованный обезвоздушенный формовочный раствор подогревают и продавливают через фильеру. Для формования полых волокон применяют фильеры с фигурными отверстиями, со стержнями в отверстиях (рис.19) Фигурные отверстия имеют различную форму.
Рис.19. Схемы фильер с отверстиями в виде сегментных дуг и с капилляром для формования полых волокон
Фильеры с капиллярами наиболее универсальны. Раствор подают в зазор между корпусом и стенками капилляра, а в канал капилляра подают газ или жидкость. Давлением газа или жидкости можно изменять геометрические характеристики полого волокна.
Далее происходит удаление растворителя либо испарением его в шахте, либо вымыванием в осадительной ванне. В последующем капилляры (полые волокна) проходят те же стадии постобработки, что и плоские полимерные мембраны.
Капилляры и полые волокна отличаются друг от друга только величиной диаметра, оба вида мембран являются самонесущими, поэтому конструкции аппаратов для них одинаковы.
Принципиальным обстоятельством при изготовлении модулей является малый размер внутреннего канала: гидравлическое сопротивление его всегда высоко, поэтому в модуле нельзя использовать длинные элементы. Обычно длина не превышает 1 м, и для создания больших площадей отдельные волоконца собирают в пучки диаметром до 200 мм. Далее по особой технологии пучки скрепляют торцевыми гильзами из эпоксидного компаунда.
Конец пучка волокон опускают в чашку с фиксированными размерами (диаметр и высота) и заливают жидким герметиком. Герметик должен заполнить абсолютно все зазоры между волокнами и стенками чашки, поэтому иногда такую заготовку устанавливают на центрифугу и при вращении добиваются абсолютного заполнения зазоров.
После отверждения герметика чашку снимают и образовавшуюся гильзу обрезают по торцу для открытия залитых герметиком внутренних каналов.
Аналогичную операцию проводят с другим концом пучка капилляров, после чего готовый мембранный модуль помещают в трубчатый корпус и закрывают торцевыми крышками.
4.3. Полимерные трубчатые мембраны и модули на их основе.
В отличие от капиллярных и половолоконных мембран они не являются самоподдерживающимися, т.е. для сохранения их целостности при действии рабочего давления мембраны должны опираться на трубчатый каркас. Такие каркасы изготавливают из нетканого полиэфирного материала с пропиткой или пористых углеродных трубок.
Мембрану формуют непосредственно внутри каркаса и вместе с ним используют. На рис.20 представлена схема получения трубчатых мембран мокрым способом.
Рис.20. Принципиальная схема получения трубчатой мембраны:
а – полив; б – испарение; в - коагуляция
К резервуару, заполненному поливочным раствором, прикладывают давление сжатого воздуха для выдавливания раствора через центральную трубку в поливочный поплавок. В нем имеются распределительные отверстия, через которые раствор поступает в кольцевой зазор между пористым каркасом и поплавком. Поплавок равномерно поднимают, при этом раствор полимера размазывается равнотолщинной пленкой по внутренней поверхности каркаса. После короткой стадии испарения растворителя каркас с полимерной пленкой погружают в осадительную ванну, где и происходит формирование пористой трубчатой мембраны.
Формование мембраны происходит в заранее собранном модуле из 7 трубок.
4.4. Керамические трубчатые мембраны и мембранные модули на их основе.
Для современной керамики в качестве сырья используют большой ассортимент природных и техногенных материалов. Перечень групп:
-
Природные минералы (глины, каолины, бентонит, тальк);
-
Оксидные материалы (кварцевый песок, оксиды металлов);
-
Карбонаты (мел, мрамор);
-
Безкислородные соединения (карбиды, бориды, нитриды, силициды и др.);
-
Металлические порошки (тугоплавкие металлы).
Материалы для формования изделий характеризуются, прежде всего, размером частиц, который сильно влияет на свойства как материала, так и изделия. Мелкодисперсный материал из-за малых пор медленно обезвоживается и дает большую усадку при сушке. Грубодисперсный имеет низкую пластичность и прочность.
Формование изделий из керамики осуществляют экструзией формовочной массы, которую готовят смешением порошка с пластификатором (масла, глицерин, растворы метилцеллюлозы, поливинилового спирта, воск). Для радикального повышения пористости в массу вводят так называемые выгорающие добавки – опилки, древесный уголь, торф, сажа (до 30% по массе). Чем больше добавок, тем выше удельная производительность мембран и ниже механическая прочность.
После экструзии изделие высушивается в специальных климатических камерах.
Большая часть дефектов возникает в изделиях в процессе сушки и обжига (коробление, трещины, деформация). В начальный момент сушки вода окружает частицы, затем она испаряется, частицы сближаются, происходит усадка. В этот момент и появляются дефекты.
Для управления скоростью сушки необходимо контролировать влажность и скорость движения воздуха. Используются периодические сушилки со стеллажами, а также непрерывные - ленточные. Возможна инфракрасная сушка, СВЧ и т.д.
Далее следует стадия обжига. При обжиге протекают следующие процессы: термическое разложение исходных компонентов, химические реакции между компонентами, окислительно-восстановительные процессы с воздухом, растворение в расплавах и кристаллизация, усадка.
В процессе спекания керамический материал превращается из конгломерата слабосвязанных частиц, объединяемых силами трения и адгезии, в плотное твердое тело, частицы которого объединены химическими связями.
Любая керамическая мембрана состоит из 2-х и более слоев, которые формируют последовательно. При общей толщине мембраны в несколько миллиметров разделительный слой имеет толщину в несколько микрометров (рис.21).
Рис. 21. Схема и микрофотография многослойной неорганической мембраны.
Самый толстый опорный слой, который называют по-разному - подложка, каркас, суппорт, основа, субстрат - определяет механическую прочность мембраны и ее конфигурацию. Он должен также иметь большую пористость (~ 50%) и минимальное гидравлическое сопротивление. Изготавливают подложки любым из известных способов и обеспечивают средний размер пор 5-15 мкм. Второй слой наносят из суспензии гораздо более мелких частиц, обеспечивая размер пор 0,2-1,0 мкм, что соответствует уровню микрофильтрации. Толщина промежуточного слоя 10-50 мкм.
Промежуточный слой обычно наносят на опору либо фильтрованием в виде пленки, и тогда капиллярные силы опоры надо подавить, либо окунанием опоры в суспензию, и тогда именно капиллярный механизм действует. Толщину промежуточного слоя регулируют или зазором, или временем выдерживания в суспензии. Промежуточных слоев может быть и несколько, с постоянно уменьшающимся размером частиц. Технология нанесения каждого слоя – одна и та же. После формирования опоры и нанесения каждого слоя следует обжиг.
Формирование разделительного слоя проводят по той же методике, за исключением лишь иного состава пасты и более мелкого размера частиц. Для получения пор порядка 0,05 мкм основная масса частиц должна быть размером не более 0,1 мкм. Как правило, частицы такого размера получают золь-гель методом.
Очень важной операцией является высушивание селективного слоя. Критичность его обусловлена большой усадкой, малой толщиной и прочностью слоя, наличием сил взаимодействия с основой. Необходимо очень точно выдерживать температуру (~ 40°С) и влажность (~ 60%). Для повышения прочности слоя в формирующую суспензию вводят различные добавки.
Геометрические формы мембранных керамических элементов диктовались механическими свойствами материала, прежде всего хрупкостью, а также желанием развить поверхность фильтрования в единице объема. Поэтому от трубок с наружной, затем внутренней мембраной перешли к многоканальным блокам (сначала 7-ми, затем 19-канальным и более). Были попытки увеличить удельную площадь через нанесение мембраны на наружную стенку. Но в любом случае из-за плохой гидродинамики в аппарате наружное расположение мембраны является неудачным.
Стандартная длина блоков - 800-900 мм. Окончательное формирование мембранного элемента независимо от геометрической формы связано с герметизацией торцев. Ее осуществляют покрытием торцев и концевой части элемента по длине эмалями с последующим обжигом. Форма торцевого покрытия также очень важна. Большинство шихт для глазурей и эмалей представляет собой смесь стекла, других составляющих, глины. Все это совместно измельчается, наносится на изделие и обжигается.
5.Раздел 5. Рыночные показатели.
Оценить объем российского рынка мембран можно лишь совмещением двух баз данных – таможенной базы и неофициальной базы, полученной по опросам руководителей и сотрудников инжиниринговых компаний.
При доступности таможенной базы необходимо учитывать те обстоятельства, что таможенное оформление собственно мембран и мембранных модулей проводится по кодам нескольких групп:
- 39 – пластмассы и изделия из них;
- 69 – керамические изделия;
- 84 – оборудование и механические приспособления.
Внутри каждой группы кодирование не всегда предусматривает обязательное указание конкретного вида изделий, а достаточно выбрать лишь наименование основного конструкционного материала (3901 – 3913 – все изделия из конкретных полимеров). Величина таможенных выплат будет пропорциональна весу перевозимой партии.
В группе 84 по коду 842121 указывается в общем виде несколько более мелких подразделов, где также может быть не указан конкретный вид изделия: «Оборудование для фильтрования и очистки воды».
Мембранный рынок можно оценивать тремя показателями:
1 – площадь потребленных мембран, поскольку именно этот параметр обеспечивает производительность мембранных установок. Одновременно этот параметр определяет расходы сырья на изготовление мембран, этим параметром оценивается и рейтинг производителей мембран. Вместе с тем этот параметр существенно теряет в объективности, когда сопоставляются мембраны полимерные и керамические (на 1 м2 листовой полимерной мембраны затрачивается 80-100 г материала, на 1 м2 трубчатой керамической мембраны – 2500-3000 г материала). Еще одним важным обстоятельством является резко различающаяся стоимость 1 м2 мембран разного типа (1 м2 полимерной мембраны в виде капилляров может стоить 5-10 USD, 1 м2 керамической мембраны – 900-1200 USD);
2 – количество проданных мембранных модулей. Для изготовления конечной продукции – мембранных установок – необходимы именно мембранные модули, в которых мембрана – лишь один из материалов. Показатель этот тоже достаточно относителен, поскольку на рынке циркулирует множество типоразмеров мембранных модулей. И если все модули рулонного типа легко сопоставимы, то сравнивать их с капиллярными модулями некорректно. Если в рулонном модуле вмещается около 40 м2 мембраны, то в капиллярном с теми же габаритами – до 300 м2. Пересчитывать показатель «количество модулей» в показатель «площадь мембран» можно лишь в том случае, когда из технического описания известно заложенное в модуль при его изготовлении количество мембран. Эти данные компании-производители не всегда раскрывают. Например, в капиллярных модулях;
3 – стоимость продукции в USD. В мировой практике оценку мембранного рынка проводят именно в стоимостном выражении, хотя при этом теряется какое-либо представление о типе мембранных модулей, их соотношении.
Более-менее объективным подходом является дифференциальная оценка рынка по ранее выделенным товарным группам. В таблице 1 представлены полученные результаты.
Анализируя данные таблицы 1, необходимо иметь в виду, что продукция каждой товарной группы имеет свое индивидуальное назначение и своих потребителей. Между товарными группами конкуренции практически не существует. По достаточно необъективным причинам, о которых можно только догадываться, условная стоимость 1 м2 мембраны в составе мембранного модуля в разных группах различается более, чем на порядок. По этим причинам суммировать результаты и соотносить их друг с другом по разным группам – не очень правильно. Однако мы сделали это и определили доли каждой товарной группы в общем объеме рынка и в натуральном, и в денежном выражении. На рис.4 и 5 показано долевое распределение потребленных в 2008 году мембран и модулей в натуральном и денежном выражении.
5.1. Отраслевой анализ потребителей.
Гораздо более важным с точки зрения перспектив мембранного рынка является выявление конечных потребителей мембран, в нашей терминологии – заказчиков. Не претендуя на полноту раскрытия этих участников рынка, проведем исследование основных потребителей.
1. Модули на основе полимерных диффузионных мембран. Безусловно, они предназначены для газоразделения, и основными потребителями в 2008 году стали предприятия нефтедобывающей и нефтеперерабатывающей отрасли: ОАО «Куйбышевский НПЗ» (мембранная установка предназначена для получения азота чистотой 99,5% из воздуха); ОАО «Лукойл» (установка работает на Корчагинском месторождении нефти по обеспечению требований технологического процесса добычи); ООО «Нарьянмарнефтегаз» (мембранная установка обеспечивает технологию подготовки нефти); ОАО Саратовский НПЗ (установка обеспечивает выделение чистого водорода из газовой смеси производства аммиака).