Главная » Просмотр файлов » Паршин А.Г., Пахомов В.С., Лебедев Д.Л. - Химическое сопротивление материалов и защита от коррозии

Паршин А.Г., Пахомов В.С., Лебедев Д.Л. - Химическое сопротивление материалов и защита от коррозии (1093328), страница 5

Файл №1093328 Паршин А.Г., Пахомов В.С., Лебедев Д.Л. - Химическое сопротивление материалов и защита от коррозии (Паршин А.Г., Пахомов В.С., Лебедев Д.Л. - Химическое сопротивление материалов и защита от коррозии) 5 страницаПаршин А.Г., Пахомов В.С., Лебедев Д.Л. - Химическое сопротивление материалов и защита от коррозии (1093328) страница 52018-02-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Обычно в качестве электрода сравнения применяют во­дородный электрод, потенциал которого при любой темпера­туре принимают равным нулю. Однако водородный электрод не удобен в работе и на практике чаще используют другие электроды сравнения, например, насыщенный хлорсеребряный электрод, потенциал которого точно измерен по отношению к водородному электроду и равен +200 мВ при комнатной тем­пературе.

Для того, чтобы пересчитать потенциал металла, изме­ренный относительно хлорсеребряного электрода, по отноше­нию к водородному электроду, достаточно к потенциалу ме­талла, взятому со своим знаком, алгебраически прибавить по­тенциал хлорсеребряного электрода, т.е. +200 мВ:

(3.6)

где - потенциал металла по водородному электроду, мВ;

- потенциал металла по хлорсеребряному электроду, мВ;

- потенциал хлорсеребряного электрода (+200 мВ).

Перед проведением работы следует ознакомиться со сле­дующими вопросами:

1. Измерение потенциалов металлов (методы и электроды сравнения).

2.Равновесные и неравновесные потенциалы; ряд стандартных электродных потенциалов.

3. Измерение потенциалов металлов в зависимости от состава и концентрации электролита.

3.3.Проведение работы

Электродные потенциалы меди, железа и алюминия оп­ределяют в следующих электролитах:

медь: CuS04 - 1М; 0,1М; 0,01М; 0,001М,

H2S04- 0,5М,

NaOH- 0,5М,

NH4ОH - 0,5М,

железо: NaOH- 0,5М,

NaCl - 0,5М,

К2Сr2O7 - 0,5М,

алюминий: NaCl - 0,5М,

К2Сr2O7 - 0,5М.

Электроды (кроме алюминия) очищают наждачной бума­гой, протирают ватой, смоченной ацетоном, и закрепляют в клеммах, установленных в изолирующих пластинках.

Потенциалы измеряют с помощью универсального иономера типа ЭВ-74. Предварительно ознакомившись с работой иономера (приложение 4), для измерения потенциалов соби­рают гальваническую цепь (рис.3) из исследуемого электрода, опущенного в соответствующий электролит, и хлорсеребряного электрода, помещенного в насыщенный раствор КСl, соеди­нив растворы сифоном, заполненным насыщенным раствором КСl. Величина Э.Д.С. составленного гальванического элемента одновременно является электродным потенциалом исследуе­мого металла по отношению к хлорсеребряному электроду.

Э.Д.С. составленных гальванических элементов измеря­ют, поочередно опуская рабочие электроды в раствор и под­ключая их к иономеру. Порядок измерения описан в инструк­ции (см. приложение 4).



1 - милливольтметр; 2 - контактная клемма; 3 - изолирую­щая пластина; 4 - электролитический мостик; 5 - хлорсеребряный электрод сравнения; 6 - раствор КСl; 7 - стек­лянный стакан; 8 - рабочий электрод; 9 - рабочий электрод; 10 - коаксильный кабель

Рис.3. Схема установки для измерения электродных потенциалов

После определения величины потенциала электрод от­ключают от измерительной схемы (но не вынимают из раство­ра), подключают следующий электрод и ведут измерение та­ким же образом.

При переносе сифона из одного раствора в другой конец его, погружаемый в раствор, нужно обмыть струёй дистилли­рованной воды, пользуясь промывалкой.

Для изучения кинетики изменения потенциалов иссле­дуемых металлов измеряют их начальные потенциалы (сразу же после погружения образцов в электролит), затем, спустя 30 мин от начала опыта и вновь, спустя 60 мин от начала опыта. Величины измеренных потенциалов с учетом их знаков заносят в табл. 3.1.

В 3, 4 и 5-й графах таблицы записывают измеренные зна­чения потенциалов в милливольтах по хлорсеребряному элек­троду. В 6, 7 и 8-й графах - вычисленные потенциалы металлов относительно водородного электрода.

З.4. Обработка опытных данных

Результаты работы представляют в табл. 3.1, а также в виде графика: экспериментальная и теоретическая (рассчитан­ная по формуле Нернста) зависимость величины потенциала медного электрода в растворах сульфата меди от логарифма активности ионов металла в электролите.

3.5. Вопросы для самоконтроля

1. Какие системы в электрохимии называют равновесными?

2. В каких условиях возникают неравновесные (необратимые) потенциалы?

3. Как определить значение стандартного окислительно-восстанови-тельного потенциала системы по графику зависимости ?

4. Почему электродный потенциал железа в растворе NaOH со временем становится более положительным, а потенциал меди в растворе практически не меняется во времени (см. экспериментальные результаты)?

5. Напишите электрохимические реакции, протекающие на железном электроде в растворе Nad. Какой при этом уста­навливается потенциал - равновесный (обратимый) или не­равновесный (необратимый)?

Библиографический список

1. Жук Н.П. Курс теории коррозии и защиты металлов. -М.:Металлургия, 1980. С. 149-188, 341-369.

2. Пахомов B.C. Коррозия и защита химической аппаратуры. Электрохимическая коррозия металлов: Учебное пособие. -М.: МИХМ, 1983.- 80 с.

Лабораторная работа 4

КОНТАКТНАЯ КОРРОЗИЯ И КАТОДНАЯ ЗАЩИТА МЕТАЛЛОВ

4.1. Цель работы

Изучение явления контактной коррозии металлов, озна­комление с методом катодной электрохимической защиты с помощью протектора и поляризации от внешнего источника тока.

4.2. Теория вопроса

4.2.1. Контактная коррозия.

Контактной коррозией называют электрохимическую коррозию металлов, имеющих разные электродные (коррози­онные) потенциалы и находящихся в растворе электролита в контакте друг с другом.

Металл, погруженный в раствор электролита, в котором он термодинамически неустойчив (т.е., если в растворе имеет­ся окислитель, равновесный потенциал которого более поло­жительный, чем равновесный потенциал металла в данных условиях), подвергается электрохимической коррозии. При этом на поверхности металла протекают анодная реакция рас­творения металла и катодная реакция восстановления окисли­теля. Коррелирующая поверхность приобретает некоторый компромиссный электродный потенциал (потенциал корро­зии), при котором скорость растворения металла (анодный ток) равна скорости восстановления окислителя (катодный ток).

При замыкании в растворе электролита двух металлов, имеющих в данных условиях разные потенциалы коррозии, образуется гальваническая пара.

Для правильного понимания процессов, протекающих в такой паре, целесообразно провести анализ ее работы с по­мощью поляризационной диаграммы (рис.4). Пусть металлы "1" и "2", имеющие в данных условиях равновесные потен­циалы и , погружены в раствор, в котором присутст­вует окислитель с равновесным потенциалом . Если элек­трического контакта между металлами нет, то точки (1 и 2) пересечения анодных (линии а1 и а2) и катодных (линии К1 и К2) поляризационных кривых для каждого из металлов отве­чают условию стационарности коррозионного потенциала (Ia = Ik) и потому определяют величины исходных скоростей коррозии (Iкор1, Iкор2) и потенциалов коррозии (κορ1, κορ2) ме­таллов.

Если металлы "1" и "2" коротко замкнуть , т.е. привести в контакт (электрически соединить), то в случае, когда омиче­ское сопротивление раствора пренебрежимо мало, контакти­рующие металлы должны приобрести некоторый одинаковый компромиссный потенциал φ. Величина этого потенциала может быть найдена графически из условия стационарности электродного потенциала - сумма всех анодных токов должна быть равна сумме всех катодных токов

ΣΙа =ΣΙк (4.1)

Для этого необходимо провести графическое суммиро­вание парциальных анодных (линии а1 и а2) и катодных (ли­нии Κ1 и К2) поляризационных кривых. Точка пересечения () суммарной анодной поляризационной кривой ) и суммар­ной катодной поляризационной кривой ) отвечает равенству (4.1), а ее абсцисса является искомым компромиссным по­тенциалом .

Установившийся в короткозамкнутой двухэлектродной системе компромиссный потенциал  имеет значение, про­межуточное между первоначальными потенциалами коррозии металлов κορ1 < κορ2. Таким образом, в результате контакта происходит смещение потенциала коррозии более электроот­рицательного металла "1" (анодного металла) в положитель­ную сторону - анодная поляризация, и смещение потенциала коррозии более электроположительного металла "2" (катодно­го металла) в отрицательную сторону - катодная поляризация. Это приводит к соответствующему изменению скоростей анодных и катодных электродных процессов на контакти­рующих металлах. Действительно, при новом общем потен­циале  металл "1" будет растворяться (коррелировать) со скоростью Ιa1, большей, чем скорость его коррозии до кон­такта Iкор1 - Металл "2", наоборот, при контакте растворяется со скоростью Ia2 меньшей, чем скорость его коррозии до кон­такта Iкор2. Таким образом, растворение анодного металла уве­личивается, а катодного - уменьшается.

Если общий потенциал макропары  будет меньше рав­новесного потенциала катодного металла , то растворение (коррозия) этого металла "2" прекратится вовсе.

При установившемся потенциале макропары  на изна­чально более электроотрицательном металле "1" скорость анодного процесса Ιa1 существенно больше скорости катод­ного процесса Ιk1 , а на изначально более электроположи­тельном металле "2" скорость катодного процесса Ιk2 значи­тельно больше скорости анодного процесса Ιa2.

Разница в скоростях катодного и анодного процессов для каждого металла является внешним током, который данный металл направляет другому (или принимает от него), и представляет собой, по существу, поток электронов от анод­ного металла к катодному

(4.2)

Для двухэлектродной системы внешние токи каждого из металлов равны по абсолютной величине и противоположны по направлению. В данном случае внешний ток металла "I" будет анодным, а металла "2" - катодным. Таким образом, в гальванической макропаре металл "1" работает анодом, а ме­талл "2" - катодом. За счет внешнего тока и осуществляется соответствующая поляризация электродов.

В случае заметного омического сопротивления агрес­сивной среды рассматриваемая двухэлектродная система уже не является полностью заполяризованной - общий потенциал не устанавливается. Металлы макропары приобретают новые индивидуальные электродные потенциалы κορ1 и κορ2. При этом κορ1 < κορ1 < κορ2 <κορ2. Разность потенциалов  = κορ2 - κορ1 пропорциональна омическому сопротив­лению раствора и величине внешнего тока макропары.

Характеристики

Тип файла
Документ
Размер
795 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее