Диссертация (1091153), страница 15
Текст из файла (страница 15)
2001. № 1. P. 511–518.17. Freund Y., Schapire R.E. Experiments with a new boosting algorithm //Machine Learning: Proc. of the 13th International Conference. 1996.P. 148–156.18. Dalal N., Triggs B. Histograms of Oriented Gradients for Human Detection //Proc. of the IEEE Conference Computer Vision and Pattern Recognition.2005. P. 886–893.19.
Cerna L.R., Camara-Chaves G., Menotti D. Face Detection: Histogram ofOriented Gradients and Bag of Feature Method // Proc. of the InternationalConference on Image Processing, Computer Vision & Pattern Recognition(IPCV). 2013. 5 p.20. Zhu Q., Avidan S., Yeh M., Cheng K. Fast Human Detection Using a Cascadeof Histograms of Oriented Gradients // Proc. of the IEEE InternationalConference Computer Vision and Pattern Recognition. 2006. P. 1491–1498.11321.
Felzenszwalb P., McAllester D., Ramanan D. A Discriminatively Trained,Multiscale, Deformable Part Model // Proc. of the IEEE Conference onComputer Vision and Pattern Recognition. 2008. P. 1–8.22. Zhu X., Ramanan D. Face detection, pose estimation and landmarklocalization in the wild // Proc. of the IEEE Conference on Computer Visionand Pattern Recognition. 2012. 8 p.23. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning appliedto document recognition // Proc. of the IEEE.
1998. V. 86, no. 11.P. 2278-2324.24. Zhou E., Fan H., Cao Z., Jiang Y., Yin Q. Extensive Facial LandmarkLocalization with Coarse-to-fine Convolutional Network Cascade // Proc. ofthe International Conference on Computer Vision workshop on 300 Faces inthe-Wild Challenge, 2013. P. 386–391.25. Jain V. Learned-Miller E. FDDB: A Benchmark for Face Detection inUnconstrained Settings // Technical Report UM-CS-2010-009. Dept.
ofComputer Science, University of Massachusetts. 2010.26. Taigman Y., Yang M., Ranzato M., Wolf L. DeepFace: Closing the Gap toHuman-Level Performance in Face Verification // Proc. of the IEEEConferenceonComputerVisionandPatternRecognition. 2014.P.1701–1708.27. Kanade T. Picture processing system by computer complex and recognition ofhuman faces.
PhD thesis. Kyoto University, 1973.28. Brunelli R., Poggio T. Face recognition through geometrical features //European Conference on Computer Vision (ECCV). 1992. P. 792–800.29. Turk M., Pentland A. Eigenfaces for recognition // Journal of CognitiveNeuroscience. 1991. no. 3. P. 71–86.11430. Belhumeur P.N., Hespanha J., Kriegman D. Eigenfaces vs.
fisherfaces:recognition using class specific linear projection // IEEE Transactions onPattern Analysis and Machine Intelligence. 1997. V. 19. P. 711–720.31. Wiskott L., Fellous J., Krüger N., Malsburg C. Face recognition by elasticbunch graph matching // IEEE Transactions on Pattern Analysis and MachineIntelligence. 1997. V. 19. P. 775–779.32. Messer K., Kittler J., Short J. Performance characterization of facerecognition algorithms and their sensitivity to severe illumination changes //Proc. of the International Conference on Biometrics (ICB).
2006. P. 1–11.33. Ojala T., Pietikäinen M., Harwood D. Performance evaluation of texturemeasures with classification based on Kullback discrimination of distributions// Proc. of the 12th IAPR International Conference on Pattern Recognition(ICPR). 1994. V. 1. P. 582–585.34. Ahonen T., Hadid A., Pietikäinen M. Face recognition with local binarypatterns // Proc.
of the European Conference on Computer Vision (ECCV).2004. P. 469–481.35. Huang D., Shan C., Ardabilian M., Wang Y., Chen L. Local binary patternsand its application to facial image analysis: a survey // IEEE transactions onsystems, man, and cybernetics – part C: applications and reviews. 2011.V. 41, no. 6. P.
765–781.36. Петрук В.И., Самородов А.В., Спиридонов И.Н. Применение локальныхбинарных шаблонов к решению задачи распознавания лиц // ВестникМосковскогоим. Н.Э. Баумана.государственногоСер.техническогоПриборостроение.2011.университетаСпец.вып.Биометрические технологии. С.
58–63.37. Tan X., Triggs B. Enhanced Local Texture Feature Sets for Face RecognitionUnder Difficult Lighting Conditions // Proc. of the IEEE Transactions onImage Processing. 2010. V. 19(6). P. 1635–1650.11538. Hussain S., Triggs B. Visual recognition using local quantized patterns //Proc. of the European Conference on Computer Vision (ECCV). 2012.P. 716–729.39. Hussain S., Napoléon T., Jurie F.
Face recognition using local quantizedpatterns // Proc. of the British Machine Vision Conference. 2012. P. 1–11.40. Jafri R., Arabnia H.R. A survey of face recognition techniques // Journal ofInformation Processing Systems. 2009. V. 5. P. 41–68.41. Zhang W., Shan S., Gao W., Chen X., Zhang H. Local gabor binary patternhistogram sequence (LGBPHS): A novel non-statistical model for facerepresentation and recognition // Proc. of the IEEE International Conferenceon Computer Vision (ECCV). 2005. P.
786–791.42. Волченков М.П., Самоненко И.Ю. Об автоматическом распознаваниилиц // Интеллектуальные системы. 2005. Т. 9, Вып. 1–4. С. 135–156.43. Голубев М.Н. Разработка и анализ алгоритмов детектирования иклассификации объектов на основе методов машинного обучения //Диссертация на соискание ученой степени кандидата технических наук.Ярославль. 2012.44.
Мокеев В.В., Томилов С.В. Об эффективности анализа и распознаванияизображенийметодомдискриминантнымглавныханализом//компонентВестникилинейнымЮжно-Уральскогогосударственного университета. Серия: Компьютерные технологии,управление, радиоэлектроника. 2013. Вып. № 3, Т. 13. С. 61–70.45. Тимошенко Д.М. Методы автоматической идентификации личности поизображениям лиц, полученным в неконтролируемых условиях //Диссертация на соискание ученой степени кандидата технических наук.Санкт-Петербург.
2014.11646. Yang M.-H. Kernel Eigenfaces vs. Kernel Fisherfaces: FaceRecognitionUsing Kernel Methods // Proc. the 5th IEEE Int. Conf. on Automatic Face andGesture Recognition. 2002. P. 215–220.47. TheDatabaseofFaces//AT&TLaboratories/URL:http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.48. BioID face database // URL: https://www.bioid.com/About/BioID-FaceDatabase.49.
TheYaleFaceDatabase//YaleUniversity/URL:http://cvc.yale.edu/projects/yalefaces/yalefaces.html.50. Georghiades A.S., Belhumeur P.N., Kriegman D.J. From Few to Many:Illumination Cone Models for Face Recognition under Variable Lighting andPose // Proc. of the IEEE Transactions on Pattern Analysis and MachineIntelligence. 2001. 23(6). P.
643–660.51. Phillips P.J., Moon H., Rauss P.J., Rizvi S. The FERET evaluationmethodology for face recognition algorithms // IEEE Transactions on PatternAnalysis and Machine Intelligence. 2000. V. 22(10), P. 1090–1104.52. Gross R., Matthews I., Cohn J., Kanade T., Baker S. Multi-PIE // Proc. of theInternational Conference on Image and Vision Computing. 2010. V.
28(5).P. 807–813.53. Kanade T., Cohn J.F., Tian Y. Comprehensive database for facial expressionanalysis // Proc. of the IEEE International Conference on Automatic Face andGesture Recognition. 2000. P. 46–53.54. FaceRecognitionData//UniversityofEssex,UK/URL:http://cswww.essex.ac.uk/mv/allfaces/index.html.55. Robotics Database // National Cheng Kung University, Taiwan / URL:http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.html.11756. Riopka T., Boult T. The eyes have it // Proc.
of the ACM SIGMM MultimediaBiometrics Methods and Applications Workshop. 2003. P. 9–16.57. Zhu Z., Fujimura K., Ji Q. Real-time eye detection and tracking under variouslight conditions // Proc. of the Symposium on Eye Tracking Research andApplications. 2002. V. 25. P. 139–144.58. Zhu Z., Ji Q., Robust real-time eye detection and tracking under variablelighting conditions and various face orientations // Computer Vision andImage Understanding.
2005. 98 (1). P. 124–154.59. Wang P., Green M., Ji Q., Wayman J. Automatic eye detection and itsvalidation // Proc. of the IEEE Conference on Computer Vision and PatternRecognition. 2005. V. 3. P. 164–172.60. Li G. An Efficient Face Normalization Algorithm Based on Eyes Detection //Proc. of the IEEE International Conference on Intelligent Robots andSystems. 2006.
P. 3843–3848.61. Song F., Tan X., Chen S., Zhou Z.H. A literature survey on robust andefficient eye localization in real-life scenarios // Pattern Recognition. 2013.V. 46(12). P. 3157–3173.62. Marques J., Orlans N.M., Piszcz A.T. Effects of eye position on eigenfacebased face recognition scoring // Technical Paper of the MITRE Corporation.October 2000.
7 p.63. Cao Z., Yin Q., Tang X., Sun J., Face recognition with learning-baseddescriptor // Proc. of the IEEE Conference on Computer Vision and PatternRecognition. 2010. P. 2707–2714.64. Javier R., Rodrigo V., Mauricio C. Recognition of faces in unconstrainedenvironments: a comparative study // European Association for SignalProcessing Journal on Advances in Signal Processing.