Диссертация (1091053), страница 22
Текст из файла (страница 22)
2014. V.126. P. 113–122.113. Wu W., Wang B., Shi W., Li X. An overview of ammonia-basedabsorption chillers and heat pumps // Renewable and Sustainable EnergyReviews. 2014. Volume 31. P. 681–707.114. Palenzuelaa P., Roca L., Zaragoza G., etc. Operational improvements toincrease the efficiency of an absorption heat pump connected to a multieffect distillation unit // Applied Thermal Engineering. 2014. V.63. Issue 1.P. 84–96.115.
Suna F., Fu L., Sun J., Zhang S. A new waste heat district heating systemwith combined heat and power (CHP) based on ejector heat exchangers andabsorption heat pumps // Energy. 2014. V.69. P. 516–524.116. Jung C. W., An S. S., Kang Y. T. Thermal performance estimation ofammonia-water plate bubble absorbers for compression/absorption hybridheat pump application // Energy. 2014. V.75. P. 371–378.117. Kim J., Park S.-R., Baik Y.-J., etc. Experimental study of operatingcharacteristics of compression/absorption high-temperature hybrid heatpump using waste heat // Renewable Energy.
2013. V.54. P. 13–19.118. van der Pal M., Wemmers A., Smeding S., de Boer R. Technical andeconomical feasibility of the hybrid adsorption compression heat pumpconcept for industrial applications // Applied Thermal Engineering. 2013.V.61. Issue 2. P.
837–840.119. Bourouis M., Nogués M., Boer D., Coronas A.. Industrial heat recoveryby absorption/compression heat pump using TFE–H2O–TEGDME workingmixture // Applied Thermal Engineering. 2000. V.20. Issue 4. P. 355–369.120. Meunier F. Adsorption heat powered heat pumps // Applied ThermalEngineering. 2013. V.61. Issue 2. P.
830–836.176121. ЗеленкоВ.Л.,ХейфецЛ.И.Предельнаяэффективностьадсорбционного теплового насоса // Вести Моск. Ун-та. Секция 2.Химия. 2007. Т. 48. №1. С. 12-17.122. Павлов Ю.В. Макрокинетические параметры адсорбентов длятепловых насосов и разделения воздуха. Дисс. канд. хим. наук. Москва,2006. – 75 с.123. Pons M. Global analysis of refrigerative adsorption cycles with thermalregeneration (non-uniform temperature) // Int. J. Refrigeration, 1997. № 6.P. 411-420.124.
Herzog T. H., Jänchen J., Kontogeorgopoulos E. M., Lutz W. SteamedZeolites for Heat Pump Applications and Solar Driven Thermal AdsorptionStorage // Energy Procedia. 2014. V.48. P. 380–383.125. Demir H. Development of microwave assisted zeolite–water adsorptionheat pump // International Journal of Refrigeration. 2013. V.36. Issue 8. P.2289–2296.126. Xue B., Iwama Y., Tanaka Y., etc. Cyclic steam generation from a novelzeolite–water adsorption heat pump using low-grade waste heat //Experimental Thermal and Fluid Science. 2013. V.46.
P.54–63.127. Al-Ansari A., Ettouney H., El-Dessouky H. Water–zeolite adsorptionheat pump combined with single effect evaporation desalination process //Renewable Energy. 2001. V.24. Issue 1. P.91–111.128. Huang H., Oike T., Watanabe F. Development research on compositeadsorbents applied in adsorption heat pump // Applied Thermal Engineering.2010. V.30.
Issue 10. P. 1193–1198.129. San J.-Y., Lin W.-M. Comparison among three adsorption pairs for usingas the working substances in a multi-bed adsorption heat pump // AppliedThermal Engineering. 2008. V.28. Issues 8–9. P. 988–997.130. Tso C.Y., Chao C. Y.H., Fu S.C. Performance analysis of a waste heatdriven activated carbon based composite adsorbent – Water adsorption177chiller using simulation model // International Journal of Heat and MassTransfer. 2012. V.55.
Issues 25–26. P. 7596–7610.131. Henninger S.K., Schicktanz M., Hügenell P.P.C., Sievers H., HenningH.-M. Evaluation of methanol adsorption on activated carbons for thermallydriven chillers part I: Thermophysical characterization // InternationalJournal of Refrigeration. 2012. V.35. Issue 3. P. 543–553.132. Bonaccorsia L., Calabresea L., Proverbio E., etc. Synthesis of SAPO34/graphite composites for low temperature heat adsorption pumps // Journalof Energy Chemistry. 2013.
V.22. Issue 2. P. 245–250.133. San J.-Y., Hsu H.-C. Performance of a multi-bed adsorption heat pumpusing SWS-1L composite adsorbent and water as the working pair // AppliedThermal Engineering. 2009. V.29. Issues 8–9. P. 1606–1613.134. TeGrotenhuis W.E., Humble P.H., Sweeney J.B. Simulation of a highefficiency multi-bed adsorption heat pump // Applied Thermal Engineering.2012. V.37. P. 176–182.135. Frazzica A., Füldner G., Sapienza A., Freni A., Schnabel L.
Experimentaland theoretical analysis of the kinetic performance of an adsorbent coatingcomposition for use in adsorption chillers and heat pumps // AppliedThermal Engineering. 2014. V.73. Issue 1. P. 1020–1029.136. Sharonov V.E., Aristov Yu. I.. Chemical and adsorption heat pumps:Comments on the second law efficiency // Chemical Engineering Journal.2008.
V.136. Issues 2–3. P. 419–424.137. Hirata K., Kakiuchi H. Energy saving for ethylene process by AdsorptionHeat Pump // Applied Thermal Engineering. 2011. V.31. Issue 13. P. 2115–2122.138. Копьев С.Ф. Теплофикация. – М.–Л.: Государственное издательствостроительной литературы. 1940. – 300 с.139. Селявина И.Н., Ефремов Г.И., Журавлева Т.Ю. Описание кинетикихимического теплового насоса.
Труды 2 Всероссийской школы –178семинара молодых ученых и специалистов. «Энергосбережение –теория и практика». – М.: Изд-во МЭИ. 2004. С. 277-278.140. Карпис Е.Е. Метало – водородно – гидридные тепловые насосы икондиционеры // Холодильная техника. 1982. №5. С. 55-57.141. Kim S. T., Ryu J., Kato Y. The optimization of mixing ratio of expandedgraphite mixed chemical heat storage material for magnesium oxide/waterchemical heat pump // Applied Thermal Engineering.
2014. V.66. Issues 1–2. P. 274–281.142. Zamengo M., Ryu J., Kato Y. Thermochemical performance ofmagnesium hydroxide–expanded graphite pellets for chemical heat pump //Applied Thermal Engineering. 2014. V.64. Issues 1–2. P. 339–347.143. Kim S. T., Ryu J., Kato Y.
Reactivity enhancement of chemical materialsused in packed bed reactor of chemical heat pump // Progress in NuclearEnergy. 2011. V.53. Issue 7. P. 1027–1033.144. Myagmarjav O., Ryu J., Kato Y. Lithium bromide-mediated reactionperformance enhancement of a chemical heat-storage material formagnesium oxide/water chemical heat pumps // Applied ThermalEngineering. 2014.
V.63. Issue 1. P. 170–176.145. Ishitobi H., Uruma K., Takeuchi M., Ryu J., Kato Y. Dehydration andhydration behavior of metal-salt-modified materials for chemical heat pumps// Applied Thermal Engineering. 2013. V.50. Issue 2. P.
1639–1644.146. Hamdan M.A., Rossides S.D., Khalil R. H. Thermal energy storage usingthermo-chemical heat pump // Energy Conversion and Management. 2013.V.65. P. 721–724.147. Guo J., Huai X. Optimization design of recuperator in a chemical heatpump system based on entransy dissipation theory // Energy. 2012. V.41.Issue 1. P. 335–343.148. Guo J., Huai X., Li X., Xu M. Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump // Applied Energy.
2012. V.93. P.261–267.179149. Xu M., Duan Y., Xin F., Huai X., Li X. Design of an isopropanol–acetone–hydrogen chemical heat pump with exothermic reactors in series //Applied Thermal Engineering. 2014. V.71. Issue 1. P. 445–449.150. Xin F., Xu M., Huai X., Li X. Study on isopropanol–acetone–hydrogenchemical heat pump: Liquid phase dehydrogenation of isopropanol using areactive distillation column // Applied Thermal Engineering. 2013.
V.58.Issues 1–2. P. 369–373.151. Xin F., Xu M., Huai X.-L., Li X.-F. Characteristic and kinetic of liquidphase isopropanol dehydrogenation over Raney nickel catalysts for chemicalheat pump // Applied Thermal Engineering. 2014. V.70. P. 580–585.152. Chan C.W., Ling-Chin J., Roskilly A.P.
A review of chemical heatpumps, thermodynamic cycles and thermal energy storage technologies forlow grade heat utilization // Applied Thermal Engineering. 2013. V.50. Issue1. P. 1257–1273.153. Fadhel M.I., Sopian K., Daud W.R.W., Alghoul M.A. Review onadvanced of solar assisted chemical heat pump dryer for agriculture produce// Renewable and Sustainable Energy Reviews. 2011. V.15. Issue 2. P.1152–1168.154. Коленко Е.А. Термоэлектрические охлаждающие приборы. – Л.:Наука.
1967. – 142 с.155. Коганов М.А., Привин М.Р. Термоэлектрические тепловые насосы. –Л.: Энергия. 1970. – 176 с.156. Riffat S.B., Ma X., Wilson R. Performance simulation and experimentaltesting of a novel thermoelectric heat pump system // Applied ThermalEngineering. 2006. V.26. Issues 5–6. P.
494–501.157. Chen L., Li J., Sun F., Wu C. Performance optimization for a two-stagethermoelectric heat-pump with internal and external irreversibilities //Applied Energy. 2008. V.85. Issue 7. P. 641–649.180158. David B., Ramousse J., Luo . Optimization of thermoelectric heat pumpsby operating condition management and heat exchanger design // EnergyConversion and Management. 2012.
V.60. P. 125–133.159. Kim Y.W., Ramousse J., Fraisse G., Dalicieux P., Baranek P. Optimalsizing of a thermoelectric heat pump (THP) for heating energy-efficientbuildings // Energy and Buildings. 2014. V.70. P. 106–116.160. Luo Q., Tang G., Liu Z., Wang J.
A novel water heater integratingthermoelectric heat pump with separating thermosiphon // Applied ThermalEngineering. 2005. V.25. Issues 14–15. P. 2193–2203.161. БеловК.П.Магнитотепловыеявлениявредкоземельныхмагнетиках. – М.: Наука. 1990. – 94 с.162.