Курсовая работа 3 вариант (1065438), страница 5
Текст из файла (страница 5)
Известно, что в условиях смены дня и ночи интенсивность фотосинтеза, то есть скорость выделения кислорода и поглощения СО2 изменяется периодически (рис.15 а). Если растение поместить в условия непрерывной освещенности, то периодичность в интенсивности фотосинтеза с периодом несколько часов сохраняется достаточно длительное время. По-видимому, растение имеет свой внутренний ритм, синхронизованный с периодическим внешним воздействием.
Напомним, что в процесс фотосинтеза входят световой и темновой циклы химических реакций. Первый включает поглощение энергии квантов света и, через ряд промежуточных стадий, приводит к образованию высокоэнергетических восстановленных химических соединений и богатых энергией молекул АТФ. Эти вещества употребляются в темновом цикле (цикле Кальвина), в котором свет непосредственно не участвует. Здесь происходит восстановление углекислоты СО2 с помощью веществ, богатых энергией, и доноров водорода, полученных в световом цикле, и превращение ее в углеводы ‑ фруктозу и глюкозу (рис. 16).
В цикле участвуют углеводы с различным содержанием углерода (индекс внизу означает число атомов углевода в молекуле). Все трехуглеродные сахара имеют общее название триозы (с3), пятиуглеродные (с5) ‑ пентозы, шестиуглеродные (с6) ‑ гексозы. Цикл замкнут, т.е. вещество, к которому первоначально присоединяется углекислота (акцептор СО2, обозначенный символом с5) в результате реакции регенерируется. Самые простые сахара ‑ триозы ‑ непосредственно связаны со световым циклом, остальные сахара со световым циклом не связаны. Все реакции в цикле, за исключением первичной фиксации СО2 на рибулезе, бимолекулярные, и зависимость скорости реакции от концентрации описывается членами второго порядка.
Для упрощения системы были выделены группы веществ, реакции между которыми протекают быстро и обратимо, легкие сахара (трехуглеродистые углеводы) и более тяжелые шестиуглеродные сахара. Суммарная концентрация первых обозначалась условно с3, а вторых с6.
Предполагалось, что прибыль тяжелых сахаров с6 может осуществляться за счет соединения двух легких с3. Их убыль, так же как и убыль тяжелых сахаров, происходит в результате бимолекулярного взаимодействия тяжелых и легких сахаров. Имеет место также приток продукта с3 в сферу реакции за счет биохимически сходных процессов (гликолиза, дыхания). Эти предположения приводят к системе уравнений:
(9)
Переменные представляют собой нормированные концентрации легких (x) и тяжелых (y) сахаров. В положительном квадранте имеется одно состояние равновесия с координатами (1,1). Изоклины горизонтальных касательных определяются из уравнения
а изоклины вертикальных касательных – из уравнения
На рис. 17 изображены фазовые портреты системы. При это устойчивый фокус (рис. 17 а). При
- неустойчивый фокус, окруженный предельным циклом (рис. 17 б).
Заключение.
В современной литературе по математической биологии рассмотрены тысячи автоколебательных систем на разных уровнях организации живой природы. Несомненно, колебательный характер процессов - эволюционное изобретение природы, и их функциональная роль имеет несколько разных аспектов. Во-первых, колебания позволяют разделить процессы во времени, когда в одном компартменте клетки протекает сразу несколько различных реакций, организуя периоды высокой и низкой активности отдельных метаболитов. Во-вторых, характеристики колебаний, их амплитуда и фаза, несут определенную информацию и могут играть регуляторную роль в каскадах процессов, проходящих на уровне клетки и живого организма. Наконец, колебательные (потенциально или реально) системы служат локальными элементами распределенных активных сред, способных к пространственно-временной самоорганизации, в том числе к процессам морфогенеза.
Внутриклеточные колебания задают эндогенные биологические ритмы (биологические часы), которые свойственны всем живым системам. Именно они определяют периодичность деления клеток, отмеряют время рождения и смерти живых организмов. Рассмотренные модели колебательных систем используются в ферментативном катализе, теории иммунитета, в теории трансмембранного ионного переноса, микробиологии и биотехнологии.
Проблема биологических часов не ограничивается чисто научными задачами. Очевидно принципиальное значение этих вопросов для медицины. Изменение физиологического состояния организма на протяжении суток - изменение работоспособности, умственной активности, проявлений иммунитета - все это необходимо учитывать в повседневной жизни. Одни и те же лекарства могут давать совершенно различные эффекты в разное время суток, при разных фазах биологических ритмов. Помимо околосуточных, циркадных, периодов наши организмы подчинены многодневным - околонедельным, околомесячным, годичным и еще более длительным ритмам. Этим вопросам посвящено большое количество литературы. Вопросы эти далеки от полного выяснения. Большой интерес вызывают исследования и концепции доктора медицинских наук Л.Я. Глыбина, директора Кардиологического центра Владивостока. Л.Я. Глыбин полагает, что в сутках есть несколько периодов повышенного и пониженного физиологического состояния организма. Пониженная сопротивляемость болезням, пониженная работоспособность приходится на время 2 - 3, 9 - 10, 14 - 15, 18 - 19, 22 - 23 часа местного времени. Высокая работоспособность и сопротивляемость болезням характерна для времени суток 5 - 6, 11 - 13, 16 - 17, 20 - 21 и 24 - 1 час. Соответственно этим периодам, Л.Я. Глыбин полагает желательным начинать день в 5 - 6 часов утра и ложиться спать до 22 часов, соответственно перестроив всю общественную жизнь, отменив работу в ночные смены, вечерние сеансы кино и театральные спектакли. По его мнению, "совы" отличаются от "жаворонков" только тем, что они используют период 24 - 1 час и пропускают чрезвычайно продуктивный период 5 - 6 часов. Так ли это? Нужно много лет, чтобы найти ответы на такие вопросы.
Список литературы:
1.Волькенштейн М. В. Биофизика.Учеб. руководство, 2-е изд—М.: Наука. Гл.-ред. физ.-мат. Лит.,1988.—592 с.
2.Глыбин Л.Я. Когда ложиться спать. Владивосток: Дальневост. кн. изд-во, 1987.
3.Жорина Л.В., Змиевской Г.Н. Основы взаимодействия физических полей с биологическими объектами. Учебное пособие. - М.: Изд-во МГТУ им. Н.Э. Баумана,2006.-240с.
4.Ризниченко Г.Ю. Лекции по математическим моделям в биологии. М.: Изд-во МГУ.
5.Ризниченко Г.Ю. Математические модели в биофизике и экологии. М.: Изд-во МГУ.
6.Шноль С.Э. Биологические часы // Соросовский образовательный журнал, 1996, №7, с 26-32.
29