Главная » Просмотр файлов » Слюсарев Г.Г. - Расчет оптических систем (1975)

Слюсарев Г.Г. - Расчет оптических систем (1975) (1060808), страница 12

Файл №1060808 Слюсарев Г.Г. - Расчет оптических систем (1975) (Слюсарев Г.Г. - Расчет оптических систем (1975)) 12 страницаСлюсарев Г.Г. - Расчет оптических систем (1975) (1060808) страница 122017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 12)

Фокус Рызы приближается к объективу на 55 5 ! 45555 55.55 Ч 14 — 10 си. Р В качестве комвеисационной линзы лучше применять склеен- О.55 ную «гнперхроматическую» систсму из положительной флин. Розой линзы и отрицатеаьиой кроновой. С той же целью применяют афокальиые системы с таким же расположениеч линз. В последнем случае фокусное расстояние объектива не меняется. В настоящее время потребность в коррекционных линзах в некоторой степени отпала, твк как появились материалы, достаточно чувствительные к красной области спектра.

Однако апясаннме выше коррекционные линам могут принести большую пользу тем, что оня позволяют зиачитальио улучшить качество изображений, создаваемых в коротковолновой области спектра. В заключение приведем конструктивные злементм рада апокроматнческик объективов, расс5итаиных Б. Л.

Нефедовым, и их аберрации (табл. 1.47 †!.04). 42! Табаева Рре бе ррамми ( е ва еа ееи) аиовреаам атаева обвеет в [рт Р - трат ам; т; Р Та бе ими тбт тт етртатова вивиан* вивера а мчазато отвеаптеа и Г= таит и т: тб табавца Цбб Аберреавн (ание аа аы) иаиревынчавиы абчыыаа ' Цйбни ачба Табаева цбб цыачррчиивме аюинчм амире ачнчеаина абыачваа!р! Р = >ИЦЧ В Ч ч Р,Т Т«бааца Цба ббчрб ( ы ) ре б М У ЕЕ иц а: б.р Спасов лвшаршмурзг 1.

Небедеа й. Л. О амрн ом шмкгрс сб№ктнва, сссгояогего нз д ух аргон с!сиса в пр зм, зввшиле г й лссконарал ельней олеша «е.— Трулм ГОИС !975. г. ХХХУП.. !67, . НИ вЂ” Ий. 2. Иабсзо ° е л. Р гег а Фромм вз д ух н трех рвзлачнмх сшкок.— ОМП. 1973, № 1, с. 52 — 62. 3. Рус» овМ. М Г б р мерв че шг чс к хснсш».М., Гешезнздзг, 1959, 255 с, 4. Слмсарев Г. Г. Ме д р ч а к кспм.

М., ПИТИ, 1937, 694 с. 5. Слюсарев Г. Г. Хрш м с сгемах.-«Трудм ГОИ, 1992, г. УП1, вмп 76, ! — 37. 6. Смесерав Г. Г. Тзб х д р с с д ух н в ш склшнн ш обык в. Л., ГОИ, 1949. 50 с. 7. Спешив Г. Г. М."шдм р с с п сс х с шем. Л, «Машннс р ». 1969, 675 с. 5. Слмсареаа.Нльн а А. н. Ф р улм л рас ша гррйного склшннош б «тапа.— ОМП, 1956, № 4.

с, 1! — №. 9. Слмсщгеаа!Нльл а А. Н., С нашшк Т. П. Об аберрадхек вмсшнк и Р ЛКОВ КЕГХ. К гссзпн З МК ЛЕЕПНМК СбьсКГНОЗВ.— ТРуДМ ГОИ, 1970. . ХХХУП,вмп, №7, .52 — П5, 19. Сшйввсх й М. С. Р ч г бе попе но н о о сбъекгнна, состзяшс з двух ннзового с сс н го р оа . н м — ОМП, !955, !Ф 3, с 29 — 3!. П, Мйз А., Уползай Х Ор!Мз, 1№3П959, Вб. №,№ 4. !2. Мшв У. «Мйпсй, А1 б.

В ., 1963, Вб. Ю. !3. Ншз Р, «АМшрй, Уев .. ЮЗМ Ва'. №.№ 3. Глава И ВЕРНЕРЫ, ВБВРЬЧИВЕМШИЕ СИСТЕМЫ, ВРНТЕНЬНЫЕ ТРУБМ 1. ЕИШЦГ Сбйвв вввав(вл ввулврвв Окуляром яазываетс» последний компонент телескопических систем, находящийся яепосредсгвенно перед глазом наблюдагелп (нлн любого другого прнечннка световой ввергни, создающего нзображенне бесконечно далеких предметов).

В его переднем фокусе абрззуегся иэображение бесконечно далеких предмеюв, создаваемое обьсктнвом (алкин нлк в комбинация с обарачнвающамн снстемамп, прнэменнымн Клн лнкзовымп). Окуляр представляет собой.короткофокусйую, обычно ат 10 да 50 мм (в редких случаях вмхадящую ю зтнх пределов), оптическую систему. Ега относительное огаерсгне равно относнгельнаму отверстию впереди сгаящей системы, ако мепаетса в пределах аг 1 г 2 да 1: !5 а астрономических ннструмвнтах, Лля окуляров характерны большие угли поля зрения. Если ,в сгарннных зрительных и астрономическвх трубах наблюдателя довольствовалн«ь угламн в 80 — 40' в пространстве нзображеннй, го в настоящее время прн наблюдении быстро дзигающккся предметов, широких ландшафтов требуются поля, превыпгающне 70— 80' н доходящие до ! 00" н больше.

Лругой характерной чертой окуляра является большое рас. стояние от его последней поверхиастн до выходного зрачка, поскольку зрачок глаза (прн малых углах поля) должен совпадать с выходным зрачком окуляра, пря большак углах поля вследствие двнженай глаэпога яблока, неабхаднмых для ахваза всего поля, аркадной зрачок окуляра должен совпасть с центром вращення глазною яблока. В первом случае зта рассзоянпе «асгэвляег 10 †!2 мм, во. втором — около 25 мм.

Перечнсленные особенности окуляра приводят к тому, чго главное внимание прп нсправлення аберраций должно быть обращено на аберрация наклонных пучков; днсчорспю, астигматязм, кривизну поля, хромвтпческую . равность .увелнченнй; осевые аберрации должны быгь устранены лишь орн налнчнн сеток. В юнрокоугольных окулярах аберрация в зрачке может оказаться значительной; она может свести и» нег все «ачества окуляра, мещан одновременному рассматрнвапню воша поля зрения.

гш Большие трудности вызывает исправление крцвизиы паля, которое требует значительного усложнения конструкции. Учитывая аккомодаиноипую спесобносш глаза, можно допустить такую кривизну, прк коюров размыть аккомодацин в центре полз н на краях не превышает нескольких дноптрнб, Меащвщщ ифиарби Абцррщз1 А)щАиззщуицз1 еи! зизнци г!оскольку впереди окуляра стоит всегда объектив или более сложная система, слелует при расчеш окуляра учесть аберрация втой системы и уметь заранее определить аберращги в пространстве изображений, аяан аберрации обьектива и окуляуа.

Окуляры удобно рассчитывать в обратном ходе, прн котором плоскость объектов находится на бесконечности !имеется в виду, что наблюдатель облалает нормальным зрением, т. е. его дальняя точка нахолнтсл на бесконечности). В 'первом приближения для тачки па осн н прк ясболыиих углах полл можно считать, по я аберрации телескепнчецной св., р ' - в м сгемы могут быть получены де- лением суммы аберрацнб (с соотз я ! ватага)пощямя акепвын).ке фо. ев! кусное ршстоянве окуляра; ио при бывших углах поля слелуст ' применять более точные приемы, рве. г!.! например формулу Д. Ю.

Гвль- перка ))! аля сложения мерилнояальвой аберрации системы,, предшествующей окуляру, с аберрацией окуляра, выпиленной для обратного хода лучей. Рассмотрим на рнс. РЕ ! луч Е,, вышедший из системы, пред. шествующей окуляру, и пересекающий фокавьную плбскость окуляра и гочка А ва расстоянии рг = рг,! ф бб! от оптической осн. Луч Ет, рассчнтанныд через окуляр в обратном ходе, пересекает переднюю.фокальную плоскость Окуляра в тоека В на расстоянви рз = ре,т ф ббг от оптнческоб оси.

Ксордиватм точек пересечения лучей Е, и Е, в плоскости входного зрачка окуляре предполагаются разними. Величины рел н бол — коорюдшты точек пересечения яучей Е, .н Е, с передней фокальиоб плоскосгъю, вычисляшгые по формулам яаракснвльной оптики, працполагавмся равяыми, т. е. иг.! игл и, следоввтевьяо. иря бб! = О ббг О лУч Ез, Рассчитанный чеРеа окУлЯР в обРатиоМ ходе, совпаввет с Е,, выходянцгм нз системы, предпмсгвующвб й ок лЯРУ. Угол бп' = Е)МЕг мелЩУ лУчамн Ет Я' Ее пРвДстдалпет й аберраипю системы для луча Е; после расчета его через всю систему в прямом хопе.

Совмещевне точек пересечены* ау. !ге чей !., н ь» с передней фоиальпой плоскостью окуляра можно выразить слелующим равенством: рхг+бр( «;„тй(и'+би')+бр! + ~! би'. (П,1) Тзк как величина П. 1к и' соответствует пврахсивльному зна. вению координаты точки пересечевия луча !., с передней фокальПой плоскостью окуляра, равной по предположению рех, то формула (П.й) принимает следующнй вид: %' бб«ьь —,, би +бух (--~р-Лп', Опгуда окончательно находим ! смГ' + щ' (П,й) По втой формуле вычисляется в угловой мере мерндпональная иберрания снсымы по,известным значениям пооеречных меридщщвльюхд аберрвннй в передней фокальной плоскосгн как «цгййществувягщй окуляру спстемы, так и самого окуляра.

Из й«ой жейюрмулы следует, что прн большом абсолютном зиаченни ббййчвиы разности бб,' — бб! аберрапля всей системы в угловой би' может оказаться малоВ, если звачение пронзводяой . "видике по сравнению со значенвем первого члена знамепФелв; вго обстоятельство вмеет не только теоретическое, ио н практическое аначение.

Звщггрй,.чю в формуле (П,З) под производной †," пояимаетса иртрщдодиая от всех абвррапнй окуляра для меридиоизль. исто луча!пй углу полн зрении« если рассматриваемый луч яв. лвюся главным лучом, то зта проимюдная равна прояззодиой ~37 Величина Р' 1б (и + Нп) определяет координату точки в перчхвегг фокальной плоскости окуляра, соответствующей парексвальному пу~ку, параллельному в пространстве изображений системы лучу Еь Третий член правой части формулы (П.!) дает приращение аберрации окуляра вследсгвне изменения наклона луча Ль на величину бпй Считая би' бесконечно малой, можно формулу (П.1) представить в виде Рхг+бб! =!' Гби'+- тт-Ив'+ббт+,т Юз'.

(П й) от дисторсин акулзра по углу поля зрения. Способ вычисления производной -~'-",-, основанный 'иа применении обоб)цепного ЗГ условия косинусов, приводится в 111. На нрзктике зта производная может быть получена графически следующим образом. Рассчитмваетгл «од ряде лучей (5 в 10), исходящих иэ центра входного зрачка Р окуляра (в прямом коде); лля кажаого из этих лучей отьгсчаются высоты р' точки пересечения луча А с фокальной плссхостью окуляра н угол и', составляется график б' как функции от и'. Угловой коэффициент касательной к кривой р' = 1(и') в тачке с ординатой бб, представляет собой искомую величину.

Наиболее часто применяемью на практике(е бииоклнк, подзорных трубах„ геодезических приборах, микроскопах и т. д.) окуляры состоят из двух сравнишльно тонких, разделенных более или менее значительным возпушиым промежуткОм компонентов. Их угол поля зрения ие превышает 40 — 50, относительное от. зерстие 1: В, и при таннх характеристиках метод расчета. осно. ванный на подгонке коэффициентов аберраций 3-го порядка е упрощенном виде (в предположении бесконечно тонких кампонентов), поащщяет получить вполне удовлетворительные результаты без болыпай затраты труда. Ьшее сложные широко>гольные окуляры, окуляры с удаленным выхадимм значком, требующие более утояченнмх и трулоемкпх методов расчпга, будут рассмотрены ииищ ВВ)щрц, Вез!>В>>з >3 й>1! >В!В>1 Вйй>В>ВПВ> Сущем Зсйделн для окуляров, состоящих нз двух тонких «оппонентов.

В настоящее время при наличии ЭВМ, обладающих громадной скоростью. вычислений, излюбленный способ расчета окуляров (кзя и большинства оптических систем) заключается в выборе готового, т. е. уже рассчитанного, окуляра с близкими характеристиками (такой всегда найдется в архиве вмчнслительното бюро) и доведении его с помощью ЭВМ да состояния, обеспечивающего получение необходимого качества изображения, Неоднократиме неудачи при попытках испольэовать машину дли подгомки аберраций'в>жеаны чаше всего тем, что от исслйзуемой снстемм требуют тоге, чтб оии ио разным причинам, например иедостщочной гибкости вмбранной схемы, не в амтояини давать, несмотря яа кажущееся обилие свсбодимх параметров. Поэтому подробный зпализ коррекционимх возможностей (с точки зрения исправления аберраций 3-го порядка) окуляров, состоящих иа двух тонких «омцонеитав, должен.

Характеристики

Тип файла
DJVU-файл
Размер
5,07 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее