Главная » Просмотр файлов » Чигарев А.В. - ANSYS для инженеров

Чигарев А.В. - ANSYS для инженеров (1050686), страница 34

Файл №1050686 Чигарев А.В. - ANSYS для инженеров (Чигарев А.В. - ANSYS для инженеров) 34 страницаЧигарев А.В. - ANSYS для инженеров (1050686) страница 342017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 34)

ально пластичных материалов (а = О, например, цветные металлы, железо). Вели изотропный материал имеет более сложную диаграмму, либо исслелователь хочет более точно отразить участок перехода упругих деформаций в пластические, то используется аппроксимация диаграммы с помощью ломаной, содержащей два и более прямолинейных участка (в АХЯ т'Б многолинейная аппроксимация МК)Х и М!ЯО). Замечание! Напряжение текучести для любого металла после технологической обработки точно определяется исходя иа испытаний на твердость по Бринеллю. 272 Наличие необратимых деформаций является коренным отличием нелинейных пластических деформаций от нелинейных упругих. При этом непинейно-упругодеформируемые материалы, как правило, вообще не имеют значительного (с практической точки зрения) линейного участка связи напряжений и деформаций.

А ппастичность практически всегда (в прикладных исследованиях) рассматривается как продолжение деформирования за пределами упругости. Билинейное кинемагничеекое унрочнение Билинейное кинематическое упрочнение предполагает, что материалы циклически идеальны (см.

предыдущий раздел), и учитывает эффект Баушннгера. Переход нзотропных материалов из упругого состояния в пластическое определяется критерием Мизеса Замечание! Экспериментально установлено, что модель удовлетворительно описывает деформации бопьшинства металлов. Поведение материалов описывается билинейной кривой деформирования, начинающейся в начале координат с гюложительнымн значениями деформаций и напряжений.

Наклон первого участка кривой определяется исходя из упругих характеристик материалов. В точке с указанным пользователем значением предела текучести„кривая продолжается вдоль второго угла, определяемого касательным модулем, имеющим те же единицы, что и модуль упругости. Касательный модуль не может быть меньше нуля и больше модуля упругости. Выбор данной модели деформирования осуществляется с помощью следующего пункта в окне 2Зеййпе Масегйа1 Мос)е1 ВеЬачфог; Масег1а1 Мое)е1а зьтга11еЫе > Зсегцссцга1 > Яоп11пеаг > 1пе1аасйс > Кйпамас1с Нагбепйпд > В111пеаг Прн использовании этого пункта главного меню, если упругие свойства изотропного материала (модуль упругости и коэффициент Пуассона) с текущим номером не были определены ранее, система АХБ'1'8 делает замечание (рис. 228): Рвс. 228, Вид вкна с замечанием 273 После получения подтверждения об ознакомлении с содержанием замечания (ОК), АХИ'т'Я предлагает заполнить недостающие данные в окне 81пеаг 1вобгор1с Ргорегб1ев Йог Мабегфа1 НцмЬег ..

(см. раздел, касающийся упругих характеристик). После их заполнения и подтверждения (ОК), пользователь получает возможность заполнить значения параметров, относящихся к определению предела текучести угла второго прямолинейного отрезка в билинейной аппроксимации в окне ВШпеаг К1пегвас1с НаЫеп1газ аког Мабег1а1 НцзвЬег ... При этом пользователю в поле 8сгевв-8сга1п ОРЫопв необходимо установить соответствующую опцию.

Опцией Ио вбгевв ге1ахаг1сп рекомендуется пользоваться ~олько для изотермнчсских задач и задач, в которых модель испытывает циклические нагрузки. Замечание! Просмотр графика диаграммы растяжения при пластических деформациях осуществляется так же как в случае с нелинейной упругостью. Мноеодинейное кннеиотичееное упроннение (общее) Модель абсолютно аналогична модели билинейного кинематическо. го упрочнения и учитывает эффект Баушингера.

Однако, следуе~ отметить, что многолинейное упрочнение позволяет более точно, чем билинейное, описать диаграмму растяжения. Пункт меню окна гэеИпе Мабег1а1 Мосзе1 ВеЬатг1сг; Масег1а1 Мое)е1в Атга11еЬ1е > 8бегисгига1 > Ноп11пеаг > Хпе1авс1с > К1певаб1с Нпгс(еп1пд > Мц1с111пеаг (Оепега1) Как и в предыдущем случае, если упругие свойства изотропного материала (модуль упругости и коэффициент Пуассона) с текущим номером не были определены. то АННИЯ делает замечание, и после подтверждения пользователя (ОК) предлагает заполнить недостающие данные в окне Ь1пеаг 1воегор1с Ргсрегб1ев Рог Мабег1а1 НцзвЬег,.

(см. раздел, касающийся упругих характеристик). После их заполнения н подтверждения (ОК), пользователь получает возможность заполнить поля таблипы 8сга1п / 8сгевв, уже относящейся к определению диаграммы растяжения за пределами упругости в окне Ми1Ь111пеаг К1пеака11с Нагс)еп1пс Еог Мабег1а1 НщвЬег .... Добавление пары значений 8бга1п / 8бгевв осуществляется при помощи кнопка Адс) Ро1пс. 274 Замечание! При решении с учетом многопинейною кинематическои упрочнения пользователь имеет возможность определить параметры деформационной кривой, содержащей до 20 пар значений деформаций и напряжений. Просмотр диаграммы растяжения при пластических деформациях осуществляется так же, как в случае с нелинейной упругостью.

Билинейное изотропиое упрочнеиие Данная модель не описывает эффект Баушннгера. Поведение материалов описывается билинейной кривой деформирования, начинающейся в начале координат с положительными значениями деформаций и напряжений. Наклон первого участка кривой определяется, исходя из упругих характеристик материшюв. В точке с указанным пользователем значением предела текучести„ кривая продолжается вдоль второю угла, определяемого касательным модулем, имеющим те же единицы, что и модуль упругости. Касательный модуль не может быть меньше нуля и больше модуля упругости.

Пунктокнареййпе Масегйа1 Мобе1 Вепачйог: Масегйа1 Мобе1з Ача11еЫе > Всегцсспга1 > Ноп11пеаг > 1пе1азк1с > 1зосгорйс Нагбеп1пс > В111пеаг Замечание! Работа с этой моделью полностью аналогична работе с моделью билинейного кинематического упрочнения. Многолзшейное изотроппое упрочнеиие Данная модель не описывает эффект Баушингера.

При многолинейиом изотропном упрочнении диаграмма растяжения аппрокснмируется ломаной линией с двумя и более прямолинейными участками. Присвоение материалу с текущим номером значений соответствующих физических констант, определение постоянных, зависящих от температуры, просмотр диаграмм растяжения совершенно аналогичен предыдущему случаю, т.е. билинейному изотропному упрочнению. Поэтому приведем лишь путь, по которому можно вызвать для заполнения окно НН1с111пеаг 1зосгорйс Нагйеп1пд бог Масегфа1 НтивЬег (пункт окна Веб1пе Масегйа1 МЫе1 Вебач1ог): Масегйа1 Мойе1в Ача11еЫе > Ясгпсспга1 > Ноп11пеаг > 1пе1азв1с > 1восгорйс Нагйеп1пс > Ввз1с111пеаг 275 Редактирование свойств уже использующихся материалов Если есть необходимость изменить значения констант, не меняя модели, то следует вызвать окно ВеНпе Масегха1 Мойе1 Веназгхог с помощью пункта главного меню: Махп Мепп > Ргергосезвог > Масегха1 Ргорз > Масегха1 Мойе1в...

Эатем, используя его левое окно Магегйа1 Мобе1з Вейхпес3„ содержащее нумерованный список уже заданных материалов, двойным щелчком "мыши" открыть содержание раздела с номером того материала, свойства которого вы хотите отредактировать. Раздел с номером материала содержит название физической модели либо список моделей, которые присвоены данному материалу. Например, если материал с номером 1 имеет пластические свойства, то обязательно в списке физических моделей будут перечисляться и упругие свойства. Выбранную физическую модель, принадлежащую разделу с номером материала, можно удалить, используя раздел Ебхс окна ОеНпе Мааегха1 Моде1 Вепатгхог, копировать, либо вызвать двойным щелчком содержимое значений постоянных и изменить их значение в полях ввода с соответствующими метками, ДОПОЛНИТЕЛЬНЫЕ СРЕДСТВА РАБОТЫ СО СВОЙСТВАМИ МАТЕРИАЛОВ В АХЯЪ"Я Сохранение созданных моделей материалов и отдельные МФ-файл Пункт главнага меню Ргергосеввог > Мааегха1 Ргорз > Игхае го Рх1е При использовании этого пункта меню появится окно Игхае Макегха1 Ргорегкхез Со Рх1е.

При этом в указанном окне: ° Необходимо указать имя, с которым требуется сохранить данный файл. ° В выпадающем меню с меткой Вгхзгегв необходимо указать логический диск. 276 ° В окне над выпадающим меню необходимо выбрать директорию, в которой этот файл будет сохранен. ° Нажать кнопку ОК. Замечание! Можно сохранить лишь модель с линейными свойствами. Расширение файла можно не указывать, "по умолчанию" расширение мр. Команда МРЧЯХТЕ, глагве, Ехг, Взг, атВ, ГЧАТ где: ° Влете — имя файла, в который будут записываться данные для модели материала.

° Вхг — расширение файла (не более 8 символов). Если параметр опущен, то будет создан файл с расширением твр. ° Вйг — директория, в которой будет находиться файл (не более б4 символов). ° Ъ| — метка, позволяющая записывать данные модели с нелинейными свойствами. Если метка опущена, то будут записаны только линейиые свойства.

° МАТ вЂ” метка, определяющая, что записываемый файл должен быть внесен в библиотеку свойств материалов. Метка может быть опущена. Замечание! С помощью пункта главного меню записываются только линейные свойства материалов. Чтение файла со свойствами материала Пункт главного меню Ркеркооеааок > Масек1а1 Ркорв > Вел коке И.1е... При использовании этого пункта меню появляется окно йеао Масекйа1 Ркореккйев ковш Р11е. При этом в указанном окне: ° Необходимо указать имя файла, который необходимо прочитать.

° В выпадающем меню с меткой Окйзгекв необходимо указать логический диск. ° В окне над выпадающим меню необходимо выбрать директорию, к которой этот файл находится. ° Нажать кнопку ОК 277 Команда Обгцнй вид команды при вводе с клавиатуры: МРЙЕА2З, Глаже, Ехь„Р1г, Р|Н где: ° Главе — имя файла, из которого будут читаться данные для модели материала.

Характеристики

Тип файла
DJVU-файл
Размер
11,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее