Диссертация (1026005), страница 4
Текст из файла (страница 4)
Heat Transfer Coefficientand Aerodynamic Resistance on a Surface with a Single Dimple // J. Enhanc.HОКЭ TЫКЧЬП. 1997. ↑ШХ. 4, № 2. P. 131–145.. .,9.. .,. .,//10.. 1994. . 32, № 2. . 249–254.MШШЧ H.K., O’CШЧЧОХХ T., GХОгОЫ B. CСКЧЧОХ СОТРСЭ ОППОМЭ ШЧ СОКЭ ЭЫКЧЬПОЫ КЧНfriction in a dimpled passage // J. Eng. Gas Turbines Power-Transactions112AЬЦО. 2000.
↑ШХ. 122, № 2. P. 307–313.11.MШШЧ H.K., O’CШЧЧОХХ T., SСКЫЦК R. HОКЭ ЭЫКЧЬПОЫ enhancement using aconvex-patterned surface // J. Turbomachinery-Transactions Asme. 2003. Vol.125, № 2. P. 274–280.12.Measurement of the heat transfer coefficient in the dimpled channel: Effects ofdimple arrangement and channel height /S. Shin [et al.] // J. Mech. Sci.TОМСЧШХ.
2009. ↑ШХ. 23, № 3. P. 624–630.13./ . ..14.8. .:Д.Ж //. 2006. . 6. . 170–173.Effect of vortex flows at surface with hollow-type relief on heat transfercoefficients and equilibrium temperature in supersonic flow /A.I. Leontiev [etКХ.Ж // EбЩОЫТЦОЧЭКХ TСОЫЦКХ КЧН FХЮТН SМТОЧМО. 2002. ↑ШХ. 26, № 5. P. 487–497.15./ . .Д.:.Ж //4-.8.. 2006. .6. . 158–161.16./. .Д.Ж //:.
.17.,-16-. 2007. C. 388–390.Kwon H.G., Hwang S.D., Cho H.H. Measurement of local heat/mass transfercoefficients on a dimple using naphthalene sublimation // Int. J. Heat MassTЫКЧЬП. 2011. ↑ШХ. 54, № 5–6. P. 1071–1080.18.Hwang S.D., Kwon H.G., Cho H.H. Heat transfer with dimple/protrusionarrays in a rectangular duct with a low Reynolds number range // Int. J. Heat113FХЮТН FХШа. 2008. ↑ШХ. 29, № 4. P.
916–926.19.Hwang S.D., Kwon H.G., Cho H.H. Local heat transfer and thermalperformance on periodically dimple-protrusion patterned walls for compactheat exchangers // Energy. 2010. ↑ШХ. 35, № 12. P. 5357–5364.20../. .Д.Ж.:. ... -., 2009.531 .21.. .:22... 2008. 404 .Schukin A. V., Kozlov A.P., Agachev R.S. Study and Application ofHemispheric Cavities for Surface Heat Transfer Augmentation // ASME 1995Int. Gas Turbine and Aeroengine Congress and Exposition. Vol. 4, 1995.
7 p.23.Sethi M., Varun, Thakur N.S. Correlations for solar air heater duct withdimpled shape roughness elements on absorber plate // Sol. Energy. 2012. Vol.86, № 9. P. 2852–2861.24.Li S.L., Meng X.R., Wei X.L. Heat transfer and friction factor correlations forsolar air collectors with hemispherical protrusion artificial roughness on theabsorber plate // Sol.
Energy. 2015. Vol. 118. P. 460–468.25.Qu H., Shen Z., Xie Y. Numerical Investigation of Flow and Heat Transfer in aDimpled Channel among Transitional Reynolds Numbers // Math. Probl. Eng.2013. Vol. 2013. P. 1–10.26.Elyyan M.A., Rozati A., Tafti D.K. Investigation of dimpled fins for heattransfer enhancement in compact heat exchangers // Int. J. Heat Mass Transf.2008. ↑ШХ. 51, № 11–12. P. 2950–2966.27.Surrogate Modeling for Optimization of Dimpled Channel to Enhance HeatTransfer Performance /A. Samad [et al.] // J. Thermophys.
Heat Transf. 2007.114↑ШХ. 21, № 3. P. 667–671.28.Kim K.Y., Shin D.Y. Optimization of a staggered dimpled surface in a coolingМСКЧЧОХ ЮЬТЧР KЫТРТЧР ЦШНОХ // IЧЭ. J. TСОЫЦ. SМТ. 2008. ↑ШХ. 47, № 11. P.1464–1472.29.Samad A., Lee K.-D., Kim K.-Y. Shape optimization of a dimpled channel toenhance heat transfer using a weighted-average surrogate model // Heat Transf.Eng. 2010.
Vol. 31, № 13. P. 37–41.30.Kim K.-Y., Choi J.-Y. Shape Optimization of a Dimpled Channel to EnhanceTЮЫЛЮХОЧЭ HОКЭ TЫКЧЬПОЫ // NЮЦОЫ. HОКЭ TЫКЧЬП. PКЫЭ A AЩЩХ. 2005. ↑ШХ. 48, №9. P. 901–915.31.Kim H.-M., Moon M.-A., Kim K.-Y. Shape Optimization of Inclined EllipticDimples in a Cooling Channel // J. Thermophys. Heat Transf. 2011. Vol. 25,№ 3. P. 472–476.32.Flow structure due to dimple depressions on a channel surface /P.M. Ligrani [etКХ.Ж // PСвЬ.
FХЮТНЬ. 2001. ↑ШХ. 13, № 11. P. 3442–3451.33.Local heat transfer and flow structure on and above a dimpled surface in aМСКЧЧОХ /G.I. MКСЦШШН ДОЭ КХ.Ж // J. TЮЫЛШЦКМС. 2000. ↑ШХ. 3, № 1. P. 115–123.34.Mahmood G.I., Ligrani P.M. Heat transfer in a dimpled channel: Combinedinfluences of aspect ratio, temperature ratio, Reynolds number, and flowЬЭЫЮМЭЮЫО // IЧЭ.
J. HОКЭ MКЬЬ TЫКЧЬП. 2002. ↑ШХ. 45, № 10. P. 2011–2020.35.Mahmood G.I., Sabbagh M.Z., Ligrani P.M. Heat Transfer in a Channel withDimples and Protrusions on Opposite Walls // J. Thermophys. Heat Transf.2001. ↑ШХ. 15, № 3. P. 1-9.36.Flow structure and local Nusselt number variations in a channel with dimplesand protrusions on opposite walls /P.M. Ligrani [et al.] // Int.
J. Heat MassTЫКЧЬП. 2001. ↑ШХ. 44, № 23. P. 4413–4425.37.Won S.Y., Zhang Q., Ligrani P.M. Comparisons of flow structure abovedimpled surfaces with different dimple depths in a channel // Phys. Fluids.1152005. ↑ШХ. 17, № 4. 9 Щ.38.Burgess N.K., Ligrani P.M. Effects of Dimple Depth on Nusselt Numbers andFriction Factors for Internal Cooling in a Channel // ASME Conf. Proc. 2004.↑ШХ.
2004, № 41685. P. 989–998.39.Thermal performance of dimpled surfaces in laminar flows /N. Xiao [et al.] //IЧЭ. J. HОКЭ MКЬЬ TЫКЧЬП. 2009. ↑ШХ. 52, № 7–8. P. 2009–2017.40.Park J., Desam P.R., Ligrani P.M. Numerical predition of flow structure abovea dimpled surface in a channel // Numer. Heat Transf. Part A Appl. 2004. Vol.45, № 1. P. 1–20.41.Wei X.J., Joshi Y.K., Ligrani P.M.
Numerical simulation of laminar flow andheat transfer inside a microchannel with one dimpled surface // J. Electron.PКМФКР. TЫКЧЬ. ASME. 2007. ↑ШХ. 129, № 1. P. 63–70.42.Park J., Ligrani P.M. Numerical Predictions of Heat Transfer and Fluid FlowCharacteristics for Seven Different Dimpled Surfaces in a Channel // Numer.HОКЭ TЫКЧЬП. PКЫЭ A AЩЩХ.
2005. ↑ШХ. 47, № 3. P. 209–232.43.Numerical analysis of flow structure and heat transfer characteristics in squarechannels with different internal-protruded dimple geometrics /G. Xie [et al.] //Int. J. Heat Mass Transf. 2013. Vol. 67. P. 81–97.44.Burgess N.K., Oliveira M.M., LigraЧТ P.M. NЮЬЬОХЭ NЮЦЛОЫ BОСКЯТШЫ ШЧDeep Dimpled Surfaces Within a Channel // J. Heat Transfer. 2003.
Vol. 125,№ 1. 8 p.45.Ligrani P.M., Oliveira M.M., Blaskovich T. Comparison of Heat TransferAЮРЦОЧЭКЭТШЧ TОМСЧТqЮОЬ // AIAA J. 2003. ↑ШХ. 41, № 3. P. 337–362.46.Ligrani P.M. Heat Transfer Augmentation Technologies for Internal Cooling //IЧЭ. J. RШЭКЭТЧР MКМС. 2013. ↑ШХ.
2013, № 2013.47.Reconstruction of the Vortex-Jet Structure of the Separation Turbulent Flow ina Spherical Dimple on the Wall of a Narrow Channel with Increase in theDepth of the Dimple and Intensification of the Secondary Flow in It /S.A. Isaev[et КХ.Ж // J. EЧР. PСвЬ. TСОЫЦШЩСвЬ. 2015. ↑ШХ. 88, № 5. P. 1304–1308.11648.Numerical simulation of the turbulent air flow in the narrow channel with aheated wall and a spherical dimple placed on it for vortex heat transferenhancement depending on the dimple depth /S.A. Isaev [et al.] // Int. J. HeatMass Transf. 2016.
Vol. 94. P. 426–448.49.Influence of the Reynolds number and the spherical dimple depth on turbulentheat transfer and hydraulic loss in a narrow channel /S.A. Isaev [et al.] // Int. J.Heat Mass Transf. 2010. ↑ШХ. 53, № 1–3. P. 178–197..
.50.(.51.8) //. .:. 2006. T. 6. . 230–233.EЫСöСЮЧР НОЬ АтЫЦОüЛОЫРКЧРОЬ НЮЫМС АТЫЛОХТЧНЮФЭТШЧ ТЧ OЛОЫПХтМСОЧНОХХОЧ// Forsch. im Ingenieurwesen /N. Kornev [et al.] // Engineering Res. 2005. Vol.69, № 2. P. 90–100.52.Hydrogasdynamics in technological processes visualization of a flow in aspherical dimple built in the lower wall of the rectangular-section channel of awater tunnel and numerical identification of the vortex-jet structures in it /S.A.Isaev [et al.] // J.
EЧР. PСвЬ. TСОЫЦШЩСвЬ. 2015. ↑ШХ. 88, № 2. P. 452–470.53.Vortex mechanism of heat transfer enhancement in a channel with sphericaland oval dimples /J. Turnow [et al.] // Heat Mass Transf. undStoffuebertragung. 2011. ↑ШХ. 47, № 3. P. 301–313.54.. .,. .,. ..//.8. .:. 2006. T. 6. . 226–229.55.. .,. .,. .::.:, 2009.
560 .56.Concavity Enhanced Heat Transfer in an Internal Cooling Passage /M.K. Chyu117[et al.] // ASME 1997 International Gas Turbine and Aeroengine Congress andExhibition. Vol. 3. 1997. 7 p.57.Comparison of Thermo-Hydraulic Characteristics for Two Types of DimpledSurfaces /I. Borisov [et al.] // ASME Conf. Proc.
Vol. 2004, P. 933–942.58.Rao Y., Li B., Feng Y. Heat transfer of turbulent flow over surfaces withspherical dimples and teardrop dimples // Exp. Therm. Fluid Sci. 2015. Vol.61, № C. P. 201–209.59.Experimental and Numerical Study of Heat Transfer and Flow Friction inChannels With Dimples of Different Shapes /Y. Rao [et al.] // J.
Heat Transfer.2015. ↑ШХ. 137, № 3. 10 Щ.60.HОКЭ ЭЫКЧЬПОЫ ЛОСКЯТШЫ ШП ПХКЭ ЩХКЭО СКЯТЧР 45° ОХХТЩЬШТНКХ НТЦЩХОН ЬЮЫПКМОЬ /N.Katkhaw [et al.] // Case Stud. Therm. Eng. 2014. Vol. 2. P. 67–74.61.Numerical study on characteristics of flow and heat transfer in a coolingpassage with a tear-drop dimple surface /H.S. Yoon [et al.] // Int. J.
Therm. Sci.2015. Vol. 89. P. 121–135.62.Numerical study on characteristics of flow and heat transfer in a coolingpassage with protrusion-in-dimple surface /J.E. Kimet [et al.] // Int. J. HeatMКЬЬ TЫКЧЬП. 2012. ↑ШХ. 55, № 23–24. P. 7257–7267.63.Numerical modeling flow and heat transfer in dimpled cooling channels withsecondary hemispherical protrusions / J. Liu [et al.] // Energy. 2015. Vol. 79.P. 1–19.64.Study of Laminar Forced Convection Heat Transfer for Dimpled Heat Sinks/D. PКЫФ ДОЭ КХ.Ж // J.
TСОЫЦШЩСвЬ. HОКЭ TЫКЧЬП. 2008. ↑ШХ. 22, № 2. P. 262–270.65.Optimization of Fin Performance in a Laminar Channel Flow ThroughDimpled Surfaces /C. Silva [et aХ.Ж // J. HОКЭ TЫКЧЬПОЫ. 2009. ↑ШХ. 131, № 2. P.21702.66.Transformation and intensification of tornado-like flow in a narrow channelduring elongation of an oval dimple with constant area /S.A. Isaev [et al.] //118TОМС.
PСвЬ. LОЭЭ. 2015. ↑ШХ. 41, № 6. P. 606–609.67.Isaev S.A., Leontiev A.I. Problems of simulating tornado-like heat transfer inturbulent flow past a dimpled relief on a narrow channel wall // J. Eng. Phys.TСОЫЦШЩСвЬ. 2010. ↑ШХ. 83, № 4. P. 783–793.68.Analysis of thermohydraulic efficiency increase during transformer oil flow ina minichannel with a single-row package of spherical and oval dimples at aheated wall /S.A. Isaev [et КХ.Ж // HТРС TОЦЩ.
2013. ↑ШХ. 51, № 6. P. 804–809.69.Heat transfer intensification for laminar and turbulent flows in a narrowchannel with one-row oval dimples /S.A. Isaev [et al.] // High Temp. 2015.↑ШХ. 53, № 3. P. 375–386.70.Flow structures and heat transfer on dimples in a staggered arrangement/Turnow J. [et al.] // Int.
J. Heat Fluid Flow. 2012. Vol. 35. P. 168–175.71.,/ . ..:72.Д.Ж //2.8.. 1998. T. 6. . 33–42.Kiknadze G.I., Gachechiladze I.A., Gorodkov A.Y. Self-Organization ofTornado-Like Jets in Flows of Gases and Liquids and the TechnologiesUtilizing This Phenomenon // Combust. Fire React. Flow; Heat Transf.Multiph. Syst. Heat Transf.