КГ_2глава (1024102), страница 3

Файл №1024102 КГ_2глава (Компьютерная графика) 3 страницаКГ_2глава (1024102) страница 32017-07-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В матричной форме преобразования координат можно записать так:

Рис. 2.17. Перспективная проекция

Обратите внимание на то, что здесь коэффициенты матрицы зависят от коор­динаты z (в знаменателе дробей). Это означает, что преобразование коор­динат является нелинейным (а точнее, дробно-линейным), оно относится к классу проективных преобразований.

Теперь рассмотрим общий случай — для произвольных углов наклона каме­ры и р) так же, как и для параллельной аксонометрической проекции. Пусть (х', у', z1) — координаты для системы координат, повернутой относи­тельно начальной системы (х, у, z) на углы α и β.

Тогда

Запишем преобразования координат перспективной проекции в виде:

Последовательность преобразования координат можно описать так :

Преобразование в целом нелинейное. Его нельзя описать одной матрицей коэффициентов-констант для всех объектов сцены (хотя для преобразования координат можно использовать и матричную форму).

Для такой перспективной проекции плоскость проецирования перпендику­лярна лучу, исходящему из центра (х, у, z)=(0, 0, 0) и наклоненному под углом α, β. Если камеру отдалять от центра координат, то центральная проек­ция видоизменяется. Когда камера в бесконечности, центральная проекция вырождается в параллельную проекцию.

Укажем основные свойства перспективного преобразования. В центральной

проекции:

□ не сохраняется отношение длин и площадей;

□ прямые линии изображаются прямыми линиями;

□ параллельные прямые изображаются сходящимися в одной точке.

Последнее свойство широко используется в начертательной геометрии для ручного рисования на бумаге. Проиллюстрируем это на примере каркаса до­мика (рис. 2.18).

Существуют и другие перспективные проекции, которые различаются поло­жением плоскости проецирования и местом точки схождения лучей проеци­рования. Кроме того, проецирование может осуществляться не на плоскость, а, например, на сферическую или цилиндрическую поверхность.

Рассмотрим косоугольную проекцию, для которой лучи проецирования не перпендикулярны плоскости проецирования. Основная идея такой проекции — камера поднята на высоту h с сохранением вертикального положения плоскости проектирования (рис. 2.19).

Рис. 2.18. Параллельные линии изображаются в центральной проекции сходящимися в одной точке

Рис. 2.19. Косоугольная проекция

Получить такую проекцию можно следующим способом:

1. Выполняем поворот вокруг оси z на угол а .

2. Заменяем z' на -у', а .у' на z'.

3. Выполняем сдвиг системы координат вверх на высоту камеры h

4. В плоскости (х', у', 0) строим перспективную проекцию уже рассмотрен­ным выше способом (точка схода лучей на оси z).

Преобразование координат может быть описано таким образом. Сначала оп­ределяются (x', у', z).

А потом выполняется перспективное преобразование

Преимущество такой проекции заключается в сохранении параллельности вертикальных линий, что иногда полезно при изображении домов в архитек­турных компьютерных системах.

Примеры изображений в различных проекциях. Приведем примеры изо­бражений одинаковых объектов в различных проекциях. В качестве объектов будут кубы одинакового размера. Положение камеры определим углами на­клона α = 27°, β = 70°.

Пример аксонометрической проекции приведен на рис. 2.20.

Рис. 2.20. Аксонометрическая проекция

Теперь рассмотрим примеры для перспективной проекции. В отличие от параллельной проекции, изображение в перспективной проекции существенно зависит от положения плоскости проецирования и расстояния до камеры.

В оптических системах известно понятие фокусного расстояния. Чем больше фокусное расстояние объектива, тем меньше восприятие перспективы (рис. 2.21' и наоборот, для короткофокусных объективов перспектива наибольший (рис. 2.22). Данный эффект вы, наверное, уже замечали, если занимались съемками видеокамерой или фотоаппаратом. В наших примерах можно наблюдать некоторое соответствие величины расстояния от камеры до плоскости проецирования {zkzпл) и фокусного расстояния объектива. Это соответствие, однако, условно, аналогия с оптическими системами здесь неполная.

Для приведенных Ниже примеров (рис. 2.21, 2.22) zпл = 700. Углы наклона камеры α = 27°, β = 70°.

Рис. 2.21. Перспективная проекция для длиннофокусной камеры (zK = 2000)

Рис. 2.22. Перспективная проекция для короткофокусной камеры (zK = 1200)

В случае короткофокусной камеры (zK = 1200) восприятие перспективы наиболее заметно для кубов, которые расположены ближе всего к камере. Вертикальные линии объектов не являются вертикалями на проекции (объекты разваливаются").

Усмотрим примеры косоугольной проекции (рис. 2.23, 2.24). Для нее вер­тикальные линии объектов сохраняют вертикальное расположение на проекции. Положение камеры (точки схождения лучей проецирования) описывается углом поворота α = 27° и высотой подъема h = 500. Плоскость проециро­вания параллельна плоскости (х'Оу') и располагается на расстоянии zпл = 700.

Рис. 2.23. Косоугольная перспективная проекция для длиннофокусной камеры (zK = 2000)

Рис. 2.24. Косоугольная перспективная проекция для короткофокусной камеры (zK = 1200)

Рассмотрим еще один пример изображения в центральной проекции — тега в стиле фильма "Звездные войны":

Отображение в окне

Как мы уже рассмотрели выше, отображение на плоскость проецирования соответствует некоторому преобразованию координат. Это преобразование координат различно для разных типов проекции, но, так или иначе, осущест­вляется переход к новой системе координат — координатам проецирования. Координаты проецирования могут быть использованы для формирования изображения с помощью устройства графического вывода. Однако при этом могут понадобиться дополнительные преобразования, поскольку система ко­ординат в плоскости проецирования может не совпадать с системой коорди­нат устройства отображения. Например, должны отображаться объекты, из­меряемые в километрах, а в растровом дисплее единицей измерения является пиксел. Как выразить километры в пикселах?

Кроме того, вы, наверное, видели, что на экране компьютера можно показы­вать увеличенное, уменьшенное изображение объектов, а также их переме­щать. Как это делается?

Введем обозначения. Пусть (Хэ, Уэ,Zэ) — это экранные координаты объектов в графическом устройстве отображения. Заметим, что не следует восприни­мать слово "экранные" так, будто речь идет только о дисплеях — все ниже­следующее можно отнести и к любым другим устройствам, использующим декартову систему координат. Координаты проецирования обозначим здесь как (X, Y, Z).

Назовем окном прямоугольную область вывода с экранными координатами

Xэmin Уэтп) - (Хэтах Уэтах)- Обычно Приходится Отображать В Окно ИЛИ ВСЮ

сцену, или отдельную ее часть (рис. 2.25).

Рис. 2.25. Отображение проекции сцены

а — границы сцены в координатах проекции; б— в окне часть сцены, в — вся сцена с сохранением пропорций вписана в окно

Преобразование координат проекции в экранные координаты можно задать как растяжение/сжатие и сдвиг:

ХЭ = КХ + dx, ; YЭ = KY+dy; Zэ =KZ.

Такое преобразование сохраняет пропорции объектов благодаря одинаково­му коэффициенту растяжения/сжатия (К) для всех координат. Заметим, что для плоского отображения можно отбросить координату Z. Рассмотрим, как можно вычислить К, dx и dy. Например, необходимо впи­сать все изображение сцены в окно заданных размеров. Условие вписывания можно определить так:

Если прибавить (1) к (3), то получим:

Из неравенств (2) и (4) следует:

Решением системы (1)—(4) для K будет: К min {Кх, Ку} = Кmin.

Если значение Кх или значение KY равно бесконечности, то его необходим отбросить. Если оба — то значение Кmin можно задать равным единице. Дга| того чтобы изображение в окне имело наибольший размер, выберем К = Кmin Теперь можно найти dx. Из неравенства (1):

Из неравенства (3): I

Поскольку dx1 < dx2, то величину dx можно выбрать из интервала I dx1dx dx2. Выберем центральное расположение в окне: I

Аналогично найдем dy:

При таких значениях dx и dy центр сцены будет в центре окна.

В других случаях, когда в окне необходимо показывать с соответствующим масштабом лишь часть сцены, можно прямо задавать числовые значения масштаба (К) и координаты сдвига (dx, dy). При проектировании интерфейса графической системы желательно ограничить выбор К, dx, dy диапазоном допустимых значений.

графических системах используются разнообразные способы задания масйаба отображения и определения границ сцены для показа в окне просмотра. Например, для сдвига часто используют ползунки скроллинга. Также "южно указывать курсором точку на сцене, и затем эта точка становится центральной точкой окна. Или можно очертить прямоугольник, выделяя грани­цы фрагмента сцены, — тогда этот фрагмент затем будет вписан в окно. Й так далее. Все эти способы отображения основываются на растяжении и сжатии (масштабировании), а также сдвиге, и описываются аффинным преобразованием координат.

2.5. Выводы

Представим цепочку преобразований координат от мировых к экранным следующим образом (рис. 2.26):

Рис. 2.26. Этапы преобразований координат

Для аксонометрической (параллельной) проекции координаты проекции сов­падают с видовыми координатами (хотя это и не обязательно). Преобразова­ние координат можно описать одной матрицей, которая получается пере­множением соответствующих матриц.

Важно то, что для аксонометрической проекции коэффициенты матрицы это константы, одинаковые для всех точек трехмерного пространства. 3 дает возможность свести к минимуму вычисления координат в цикле графического вывода. В этом плане можно отметить крайний случай, когда мировые координаты совпадают с экранными — вообще нет никаких преобразований координат. Например, координаты объектов задаются в пикселах экрана. Такое часто встречается, например, в двухмерной графике.

Для перспективной (центральной) проекции коэффициенты матрицы проецирования на плоскость не являются константами — они зависят от Z. Это делает нецелесообразным запись цепочки преобразований в виде одной матрицы и, как следствие этого, усложняется расчет координат в сравнении с параллельной проекцией.

Для центральной проекции иногда используют матричную форму с применением обобщенных однородных нелинейных координат [28, 32].

В качестве мировых и экранных координат нами была использована трехмерная ортогональная система. В компьютерных графических системах так­же используются другие системы координат и иные проекции. В особенности это касается систем, которые моделируют объекты, располагающиеся на по­верхности Земли. С этими вопросами можно ознакомиться в многочисленной литературе по геодезии и картографии, а также в работах, посвященных гео­информационным системам.

Характеристики

Тип файла
Документ
Размер
541 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее