diskr_edit (1023554), страница 12

Файл №1023554 diskr_edit (Методичка по дискретной математике) 12 страницаdiskr_edit (1023554) страница 122017-07-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 12)

AVA&B A (2- ой закон поглощения).

4.5. Булева алгебра (алгебра логики). Полные системы булевых функций

Как известно, алгеброй называют систему, включающую в себя некоторое непустое множество объектов с заданными на нем функциями (операциями), результатами применения которых к объектам данного множества являются объекты того же множества.

Булевой алгеброй или алгеброй логики называется двухэлементное множество B = {0, 1} вместе с операциями конъюнкции, дизъюнкции и отрицания.

Система булевых функций {f1, f2, … , fn} называется полной, если любая булева функция может быть выражена в виде суперпозиции этих функций. Из равносильностей 12 – 16 (раздел 4.3) следует, что все логические операции могут быть выражены через операции конъюнкции, дизъюнкции и отрицания. Поэтому система функций {, &, V} является полной. Также полными являются следующие системы функций:

а){, V}; б) {, &}; в) {, }.

Полнота систем {, V} и {, &} следует из полноты системы {, &, V}, а также законов де Моргана и двойного отрицания, следствием которых является возможность выразить конъюнкцию через дизъюнкцию и наоборот: A&B(AVB); AVB (A&B).

Поэтому система {, &, V} может быть сокращена на одну функцию:

Полнота системы {, } следует из полноты системы {, V} и равносильности 12 (раздел 4.3), позволяющую выразить импликацию через отрицание и дизъюнкцию:

AB AVB.

4.6. Нормальные формы

Определение 4.4. Элементарной конъюнкцией называется конъюнкция (возможно одночленная), составленная из переменных или отрицаний переменных.

Пример 4.6.

x, y, x&y, x1&x2&(x3) – элементарные конъюнкции.

xVy, x1&x2 Vx1&x2 – не элементарные конъюнкции.

Определение 4.5. Дизъюнктивной нормальной формой (ДНФ) называется формула, имеющая вид дизъюнкции элементарных конъюнкций (в вырожденном случае это может быть одна конъюнкция).

Пример 4.7.

x, x&y, x V x&(y), x1&x2&(x3) V x1&(x2)&x3 V x1&x2&(x3) – ДНФ.

(xVy)&x – не ДНФ.

Определение 4.6. Совершенной дизъюнктивной нормальной формой (СДНФ) называется такая дизъюнктивная нормальная форма, каждый конъюнктивный член которой содержит все переменные, либо их отрицания.

Пример 4.8.

x&y, x&y V x&y – СДНФ функции двух переменных.

xVx&y, xVy – не СДНФ.

Определение 4.7. Элементарной дизъюнкцией называется дизъюнкция (возможно одночленная), составленная из переменных или отрицаний переменных.

Пример 4.9.

x, y, xVy, x1Vx2V(x3) – элементарные дизъюнкции.

x&y, (x1Vx2) & (x1Vx2) – не элементарные дизъюнкции.

Определение 4.8. Конъюнктивной нормальной формой (КНФ) называется формула, имеющая вид конъюнкции элементарных дизъюнкций (в вырожденном случае это может быть одна дизъюнкция).

Пример 4.10.

x, x&y, x & x&(y), (x1Vx2)&(x3)&(x1Vx2Vx3) – КНФ.

x&y V x – не КНФ.

Определение 4.9. Совершенной конъюнктивной нормальной формой (СКНФ) называется такая конъюнктивная нормальная форма, каждый дизъюнктивный член которой содержит все переменные, либо их отрицания.

Пример 4.11.

xVy, (xVy) &(xVy) – СКНФ функции двух переменных.

x &(xVy), x&y – не СКНФ.

Теорема 4.2. Для каждой формулы булевой функции A имеется равносильная ей дизъюнктивная нормальная форма (ДНФ) и конъюнктивная нормальная форма (КНФ).

Доказательство теоремы состоит просто в указании алгоритмов нахождения для любой формулы A равносильных ей ДНФ и КНФ. Процесс нахождения этих форм называется приведением формулы A соответственно к ДНФ и КНФ. Для каждой формулы A имеется, вообще говоря, бесконечное множество ДНФ и КНФ, но для решения задач, в которых эти формы нужны, требуется, как правило, найти по крайней мере одну из них.

Алгоритм 4.1 (Алгоритм приведения формул булевых функций к ДНФ (КНФ)).

Шаг 1. Все подформулы A вида BC (т.е. содержащие импликацию) заменяем на BVC или на (B&C) (в соответствии с равносильностью 12 раздела 4.3).

Шаг 2. Все подформулы A вида B ~ C (т.е. содержащие эквивалентность) заменяем на (A&B) V (A&B) или на (AVB)&(AVB) (в соответствии с равносильностью 13).

Шаг 3. Все отрицания, стоящие над сложными подформулами, опускаем по законам де Моргана (в соответствии с равносильностями 4, 19, 20).

Шаг 4. Устраняем все двойные отрицания над формулами (в соответствии с равносильностью 8).

Шаг 5. Осуществляем раскрытие всех скобок по закону дистрибутивности конъюнкции относительно дизъюнкции для ДНФ (в соответствии с равносильностями 3а и 17) или по закону дистрибутивности дизъюнкции относительно конъюнкции для КНФ (в соответствии с равносильностями 3б и 18).

Шаг 6. для получения более простой формулы целесообразно использовать равносильности 5, 6, 7, 9, 10, 11.

Очевидно, что в результате всех указанных операций формула имеет вид ДНФ или КНФ. Указанные операции, вообще говоря, могут осуществляться в любом порядке, однако целесообразно придерживаться изложенного выше, за исключением снятия двойных отрицаний (шаг 4), от которых следует избавляться по мере их появления.

Пример 4.12.

Приведем к ДНФ и КНФ рассмотренную ранее в примере 4.4 формулу f(x1, x2, x3) = (x2 x3) ~(x1Vx2).

1. Устранив импликацию, получим:

(x2 Vx3) ~(x1Vx2).

2. Применив закон де Моргана к первой скобке и сняв двойные отрицания, получим:

(x2&x3) ~ (x1Vx2).

3. Устранив эквивалентность, получим:

(x2&x3) & (x1Vx2) V (x2&x3) & (x1Vx2).

4. Применив закон де Моргана ко второму члену дизъюнкции, получим

(x2&x3) & (x1Vx2) V (x2Vx3) & (x1& x2).

5. Применив закон дистрибутивности 3а, получим

(x2&x3&x1 V x2&x3&x2) V (x2&x1&x2 V x3&x1&x2).

6. Применив законы идемпотентности 5а и 5б, и располагая переменные по возрастанию индексов, получим:

x1&x2&x3 V x2&x3 V x1&x2 V x1&x2&x3.

7. Применив 2–ой закон поглощения (6б), вместо x1&x2&x3.V x2&x3 запишем x2&x3, а вместо x1&x2 V x1&x2&x3 запишем x1&x2 и в результате получим ДНФ нашей формулы:

f(x1, x2, x3) x2&x3 V x1&x2

При приведении к КНФ применим закон дистрибутивности 3б и получим:

x2&x3 V x1&x2  x2Vx1) & (x2Vx2) & (x3Vx1) & (x3Vx2).

Учитывая, что. x2Vx2 1(равносильность 11)и применив свойство 9а, получим окончательно КНФ для f(x1, x2, x3)

f(x1, x2, x3)  x1Vx2) & (x1Vx3) & (x2Vx3).

Приведение некоторой формулы к ДНФ и КНФ не является однозначным. Количество равносильных ДНФ и КНФ, вообще говоря, бесконечно. Однако, совершенные дизъюнктивные и конъюнктивные нормальные формы (СДНФ и СКНФ) или не существуют или единственны.

Теорема 4.3. Каждая формула A, не равная тождественно нулю, может быть приведена к СДНФ, которая является единственной с точностью до перестановки дизъюнктивных членов.

Теорема 4.4. Каждая формула A, не равная тождественно единице, может быть приведена к СКНФ, которая является единственной с точностью до перестановки конъюнктивных членов.

Доказательство этих теорем состоит в указании алгоритма приведения формулы А к СДНФ и СКНФ.

Алгоритм 4.2. (Алгоритм приведения формулы булевой функции к СДНФ)

Шаг 1. Используя алгоритм построения ДНФ, находим формулу В, являющуюся ДНФ формулы А.

Шаг 2. Вычеркиваем в B все элементарные конъюнкции, в которые одновременно входят какая-нибудь переменная и ее отрицание. Это обосновывается равносильностями:

A&A  0, B&0  0, СV0  С.

Шаг 3. Если в элементарной конъюнкции формулы B некоторая переменная или ее отрицание встречается несколько раз, то оставляем только одно ее вхождение. Это обосновывается законом идемпотентности для конъюнкции: A&AA.

Шаг 4. Если в элементарную конъюнкцию С формулы В не входит ни переменная x, ни ее отрицание x, то на основании 1- го закона расщепления (равносильность 7а) заменяем С на (С&x) V (C&x).

Шаг 5. В каждой элементарной конъюнкции формулы B переставляем конъюнктивные члены так, чтобы для каждого i (i = 1, ..., n) на i-ом месте была либо переменная xi, либо ее отрицание xi.

Шаг 6. Устраняем возможные повторения конъюнктивных членов согласно закону идемпотентности для дизъюнкции: СVС  С.

Пример 4.13.

Найдем СДНФ формулы из примера 4.4:

f(x1, x2, x3) = (x2x3) ~(x1Vx2).

1. Найденная ранее в примере 4.12 ДНФ формулы f(x1, x2, x3) имеет вид:

x2&x3 V x1&x2.

2. Шаги 2 и 3 алгоритма не требуются (они уже выполнены), поэтому переходим к шагу 4 и применяем 1-ый закон расщепления. В результате вместо каждого из двух конъюнктивных членов получим две элементарных конъюнкции (всего их будет четыре):

f(x1, x2, x3) x2&x3&x1 V x2&x3&x1V x1&x2&x3 V x1&x2&x3).

После применения шага 5 получим:

f(x1, x2, x3) x1&x2&x3 V x1&x2&x3 V x1&x2&x3 V x1&x2&x3.

4. Шаг 6 не требуется. Найденное выражение формулы f(x1, x2, x3) является СДНФ этой формулы.

Алгоритм нахождения СКНФ полностью повторяет алгоритм нахождения СДНФ, если произвести двойственную замену & на V и V на &.

Пример 4.14.

Найдем СКНФ формулы из примера 4.4:

f(x1, x2, x3) = (x2 x3) ~(x1Vx2).

1. Найденная в примере 4.12 КНФ формулы f(x1, x2, x3) имеет вид:

f(x1, x2, x3) x1Vx2) & (x1Vx3) & (x2Vx3).

2. Шаги 2 и 3 алгоритма не требуются, поэтому переходим к шагу 4 и применяем 2-ой закон расщепления (равносильность 7б). В соответствии с этим законом:

Характеристики

Тип файла
Документ
Размер
1,3 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Методичка по дискретной математике
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее