diskr_edit (1023554), страница 15

Файл №1023554 diskr_edit (Методичка по дискретной математике) 15 страницаdiskr_edit (1023554) страница 152017-07-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 15)

Все указанные строки (1-ую и 2-ую) и столбцы (1-ый, 2-ой, 3-ий и 4-ый) вычеркиваем из таблицы покрытий. После этого все элементы таблицы окажутся вычеркнутыми. Следовательно, два существенных импликанта x2&x3 и x1&x3 покрывают все элементарные конъюнкции СДНФ.

Итак, минимальная ДНФ для нашей функции имеет вид:

F2(x1, x2, x3) = x2&x3 V x1&x2 .

Рассмотрим еще один пример нахождения минимальной ДНФ булевой функции.

Пример 4.21.

Пусть булева функция задана таблицей

Таблица 4.7

x1 x2 x3 x4

f(x1, x2, x3, x4)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

0

1

1

1

0

1

0

1

0

1

1

1

0

0

Применим вначале алгоритм Квайна - Мак-Класки для нахождения сокращенной ДНФ.

Очевидно, в силу алгоритма 4.3, данная функция имеет следующую формулу в СДНФ:

F(x1, x2, x3, x4) = x1&x2&x3&x4 V x1&x2 &x3 &x4 V x1&x2&x3&x4 V

x1&x2&x3&x4Vx1&x2&x3&x4Vx1&x2&x3&x4Vx1&x2&x3&x4Vx1&x2&x3&x4.

Выпишем наборы переменных, на которых функция принимает значение 1, причем эти наборы упорядочим по группам так, что в каждую группу входят наборы с одинаковым числом единиц.

Группы A0 нет.

Группа A1:

0 1 0 0

Группа A2:

0 0 1 1

0 1 0 1

1 0 1 0

1 1 0 0

Группа A3:

0 1 1 1

1 0 1 1

1 1 0 1

Группы A4 нет.

Производим попарное сравнение наборов переменных, входящих в соседние группы.

При сравнении групп A1 и A2:

вместо (0 1 0 0) и (0 1 0 1) получим (0 1 0 –);

вместо (0 1 0 0) и (1 1 0 0) получим (– 1 0 0);

При сравнении групп A2 и A3:

вместо (0 0 1 1) и (0 1 1 1) получим (0 – 1 1);

вместо (0 0 1 1) и (1 0 1 1) получим (– 0 1 1);

вместо (0 1 0 1) и (0 1 1 1) получим (0 1 – 1);

вместо (0 1 0 1) и (1 1 0 1) получим (– 1 0 1);

вместо (1 0 0 1) и (1 0 1 1) получим (1 0 – 1);

вместо (1 0 0 1) и (1 1 0 1) получим (1 – 0 1);

вместо (1 1 0 0) и (1 1 0 1) получим (1 1 0 –).

После этого этапа массив R пуст, т. к. все наборы участвовали в образовании наборов с прочерками, а массив P = P(1) включает следующие наборы:

(0 1 0 –);

(– 1 0 0);

(0 – 1 1);

(– 0 1 1);

(0 1 – 1);

(– 1 0 1);

(1 0 – 1);

(1 – 0 1);

(1 1 0 –).

Теперь попарно сравниваются между собой наборы с прочерками. Наборы с одним прочерком, не участвовавшие в образовании наборов с двумя прочерками, помещаются в массив R.

Для нашего примера

вместо (0 1 0 –) и (1 1 0 –) получим (– 1 0 –);

вместо (– 1 0 0) и (– 1 0 1) получим (– 1 0 –)

После этого этапа в массив R попадают наборы, не участвовавшие в образовании наборов с двумя прочерками:

(0 – 1 1);

(– 0 1 1)

(0 1 – 1);

(1 0 – 1);

(1 – 0 1);

Массив P(2) состоит из набора с двумя прочерками:

(– 1 0 –).

Набор с двумя прочерками один и процедура сравнения заканчивается. Поэтому все наборы из P(2) попадают в массив R, который после этого включает наборы:

(0 – 1 1);

(– 0 1 1)

(0 1 – 1);

(1 0 – 1);

(1 – 0 1);

(– 1 0 –).

Сокращенная ДНФ имеет вид:

F1(x1, x2, x3, x4) = x1&x3&x4 V x2&x3&x4 V x1&x2&x4 V x1&x2&x4 V x1&x3&x4 x2&x3.

Найдем теперь минимальную ДНФ с помощью таблицы покрытий (алгоритм 4.7).

Составляем таблицу покрытий.

Для нашего примера получим следующую таблицу (таблица 4.8) из 8 столбцов, соответствующих 8 элементарным конъюнкциям СДНФ F(x1, x2, x3, x4) и 6 строк, соответствующих 6 простым импликантам сокращенной ДНФ F1(x1, x2, x3, x4).

Таблица 4.8

0011

0100

0101

0111

1001

1011

1100

1101

0-11

*

*

-011

*

*

01-1

*

*

10-1

*

*

1-01

*

*

-10-

*

*

*

*

Выделяем столбцы, содержащие одну метку – это 2-ой и 7-ой столбцы. Оба этих столбца определяют один и тот же импликант x2&x3 (ему соответствует 6-ая строка), который является существенным. Он покрывает следующие четыре элементарные конъюнкции СДНФ: x1&x2&x3&x4, x1&x2&x3&x4, x1&x2&x3&x4, x1&x2&x3&x4 (им соответствуют 2-ой, 3 - ий, 7 - ой и 8 - ой столбцы). Все указанные строки и столбцы вычеркиваем из таблицы покрытий. После этого таблица примет вид:

Таблица 4.9

0011

0111

1001

1011

0-11

*

*

-011

*

*

01-1

*

10-1

*

*

1-01

*

В полученной таблице нет одинаковых столбцов. В полученной таблице нет пустых строк. Выбираем такую совокупность существенных импликантов, которая покрывает все столбцы и содержит наименьшее количество букв. Для нашей таблицы это импликанты x1&x3&x4 и x1&x2&x4 (1 - ая и 4 - ая строки таблицы 4. 9), т. к. они покрывают все оставшиеся столбцы.

Итак, минимальная ДНФ для нашей функции имеет вид:

F2(x1, x2, x3, x4) = x1&x3&x4 V x1&x2&x4 V x2&x3 .

4.9. Применение алгебры булевых функций к релейно-контактным схемам

Рассмотрим электрические релейно-контакные схемы, главный элемент которых – электромагнитное реле.

Пусть x1, x2, ... , xn – набор контактов в схеме. Контакты могут быть размыкающими и замыкающими. Контакт называется замыкающим, если он замыкается при подаче напряжения. Контакт называется размыкающим, если он размыкается при подаче напряжения. Один и тот же контакт в схеме может быть как замыкающим, так и размыкающим.

Каждой последовательно- параллельной схеме сопоставим функцию проводимости:

f(x1, x2, ... , xn) =

Функция проводимости схемы, состоящей из одного элемента x, для замыкающего контакта есть f(x) = x, а для размыкающего контакта f(x) = x.

Функция проводимости схемы, состоящей из двух последовательно соединенных контактов x и y (рис. 4. 1) есть f(x, y) = x&y.

Рис. 4. 1

Функция проводимости схемы, состоящей из двух параллельно соединенных контактов x и y (рис. 4. 2) есть f(x, y) = x V y.

Рис. 4. 2

Каждой последовательно-параллельной схеме можно поставить в соответствие формулу логики булевых функций, реализующую функцию проводимости этой схемы. Две схемы считаются эквивалентными, если они имеют одинаковую функцию проводимости. Применяя равносильные преобразования, можно упрощать релейно-контактные схемы, заменяя их эквивалентными, с меньшим числом контактов.

Пример 4.22.

Найдем функцию проводимости схемы, изображенной на рис. 4. 3.

Рис. 4.3

f(x, y, z) = (y&z) V (x&y&z) V (x&y&z)  (y&z) V (y&z)  z.

Эквивалентная схема изображена на рис. 4.4.

Рис 4.4

Контрольные вопросы к теме 4

1. Выберите правильный вариант ответа 1 – 4 для следующих вопросов:

а) Сколько существует различных булевых функций n переменных? б) Сколько существует различных наборов переменных для булевой функции n переменных?

Варианты ответа: 1) 2n; 2) 22 ; 3) n2; 4) n!.

2. Какое из следующих утверждений верно:

а) Переменные булевой функции и сама булева функция принимают значения 0 или 1;

б) Переменные булевой функции принимают значения 0 или 1, а значения самой булевой функции совпадают с множеством действительных чисел;

в) Значения переменных булевой функции совпадают с множеством действительных чисел, а сама булева функция принимает значения 0 или 1;

г) Значения переменных булевой функции и значения самой функции совпадают с множеством действительных чисел;

3. Выберите правильный вариант ответа 1 – 4 для следующих вопросов:

а) Сколько может быть различных ДНФ у булевой функции?

б) Сколько может быть различных СДНФ у булевой функции?

в) Сколько может быть различных КНФ у булевой функции?

г) Сколько может быть различных СКНФ у булевой функции?

Характеристики

Тип файла
Документ
Размер
1,3 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Методичка по дискретной математике
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее