diskr_edit (1023554), страница 10

Файл №1023554 diskr_edit (Методичка по дискретной математике) 10 страницаdiskr_edit (1023554) страница 102017-07-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Шаг 3. Так как i ¹ n, поэтому переходим к шагу 4.

Шаг 4. Строим граф G4, добавляя к графу G3 новое ребро мини­мальной длины из ребер (x1, x5), (x2, x3), (x2, x5), (x4, x5). Такое ребро длины два одно: (x2, x3). Вместе с этим ребром включаем в G4 вершину x3, не содержащуюся в G3. Полагаем i = 4 и переходим к шагу 3.

Шаг 3. Так как i ¹ n, поэтому переходим к шагу 4.

Шаг 4. Строим граф G5, добавляя к графу G3 новое ребро мини­мальной длины из ребер (x1, x5), (x2, x5), (x4, x5). Таких ребер длины три два: (x2, x5) и (x4, x5). Возьмем (x2, x5). Вместе с этим ребром включаем в G5 вершину x5, не содержащуюся в G4. Полагаем i = 5 и переходим к шагу 3.

Шаг 3. Так как i = n, то граф G5 – искомое минимальное остовное дерево. Суммарная длина ребер равна 1 + 1 + 2 + 3 = 7.

Процесс построения минимального остовного дерева изображен на рис. 3.15.

Рис. 3.15

Контрольные вопросы к теме 3

1. Какое из двух утверждений верно: а) ориентированный граф яв­ляется частным случаем неориентированного графа; б) неориентированный граф является частным случаем ориентированного графа?

2. Перечислите все возможные способы задания графов.

3. Что характеризует сумма элементов столбца матрицы смежности неориентированного графа?

4. Что характеризует сумма элементов строки матрицы смежности неориентированного графа?

5. Что характеризует сумма элементов столбца матрицы смежности ориентированного графа?

6. Что характеризует сумма элементов строки матрицы смежности ориентированного графа

7. Всегда ли матрица смежности симметрична относительно главной диагонали?

8. Как по матрице смежности определить число ребер неориентиро­ванного графа?

9. Как по матрице инцидентности, не рисуя граф, определить его матрицу смежности?

10. Может ли матрица быть матрицей смежности неориентированного графа?

11. Какие из следующих утверждений являются правильными: а) если матрица смежности несимметричная, то граф ориентированный; б) если граф неориентированный, то матрица смежности симметричная; в) если диагональные элементы матрицы смежности – нули, то граф неориентированный?

12. Может ли вершина, входящая в цикл графа, иметь степень, мень­шую двух?

13. Как называется путь, у которого начало первой дуги совпадает с концом последней?

14. Как называется маршрут, у которого первая вершина совпадает с последней?

15. Можно ли утверждать, что сильно связный граф всегда содержит контур?

16. Какие из следующих матриц полностью задают граф:

а) матрица инцидентности; б) матрица од­носторонней связности; в) матрица связности; г) матрица сильной связности; д) матрица смежности?

17. По какой матрице можно без дополнительных вычислений определить число компонент связности неориентированного графа: а) матрице смежности; б) матрице инциденций; в) матрице расстояний; г) матрице связности?

18. Может ли число компонент связности графа превосходить число его вершин?

19. Верно или неверно утверждение, что в ориентированном графе с контурами минимальный путь может содержать контуры?

20. Как называется связный граф без циклов?

21. Пусть n - число вершин, а m - число ребер в связном графе без циклов. Какие из следующих соотношений возможны:

а) n = m; б) n < m; в) n m; г) n > m; д) n m?

22. Сколько ребер имеет связный граф без циклов с n вершинами?

23. Чему равно наименьшее и наибольшее число ребер в связном гра­фе без петель и кратных ребер с n вершинами?

24. Чему равно наименьшее и наибольшее число ребер в графе без петель и кратных ребер с n вершинами?

25. Верно или неверно следующее утверждение: Минимальное остовное дерево может содержать циклы?

26. Постройте дерево наименьшей общей длины, ребра которого соеди­няют вершины правильного шестиугольника.

27. Сколько компонент связности может иметь дерево?

28. Можно ли построить дерево, все вершины которого имеют сте­пень больше, чем единица?

29. Какая модель теории графов адекватна следующей задаче:

Различные организации x1, ... , xn обмениваются некоторой информаци­ей (при этом связи могут быть направленными). Если между организациями xi и xj возможен непосредственный обмен информацией, то затраты на не­го составляют rij рублей. Возможен ли обмен информацией между двумя организациями? Если возможен, то как осуществить этот обмен с наимень­шими затратами?

30. Какая модель теории графов адекватна следующей задаче:

Имеется схема городских дорог с перекрестками и, возможно, однос­торонним движением. Необходимо найти маршрут, соединяющий две точки на карте. Как найти такой маршрут при условии, что его длина минимальна?

31. Какая модель теории графов адекватна следующей задаче: Требуется построить схему электрической сети, в которой клеммы должны быть соединены с помощью проводов наименьшей общей длины.

32. Какая модель теории графов адекватна следующей задаче:

Имеется сеть связи, соединяющая n узлов. Если выйдут из строя не­которые каналы, то связь между узлами может быть нарушена. Какие кана­лы можно удалить без нарушения связи? Какие каналы нужно удалить, что­бы связь не нарушалась, а общая стоимость всех каналов была минималь­ной?

33. Какая модель теории графов адекватна следующей задаче:

Разрабатывается проект газопровода, соединяющего буровые скважины в Мексиканском заливе с находящейся на берегу приемной станцией. Сле­дует выбрать проект, в котором строительство газопровода имеет мини­мальную стоимость.

34. Какая модель теории графов адекватна следующей задаче:

Пусть имеется n изолированных городов. Какое минимальное коли­чество дорог между некоторыми городами надо построить, чтобы иметь возможность попасть из любого города в любой другой? Если заданы расс­тояния между городами, то как выбрать сеть дорог с минимальной общей длиной?

ТЕМА 4. БУЛЕВЫ ФУНКЦИИ

4.1. Определение булевой функции

Определение 4.1. Булевой функцией f(x1, x2, ... , xn) называется произвольная функция n переменных, аргументы которой x1, x2, ... , xn и сама функция f принимают значения 0 или 1, т. е. xi {0, 1}, i = 1, 2, ... , n; f(x1, x2, ... , xn) {0, 1}.

Одной из важнейших интерпретаций теории булевых функций является теория переключательных функций. Первоначально математический аппарат теории булевых функций был применен для анализа и синтеза релейно-контактных схем с операциями последовательного и параллельного соединения контактов. Подробнее это приложение теории булевых функций будет рассмотрено в разделе 4.9.

Любая булева функция может быть представлена таблицей, в левой части которой перечислены все наборы переменных (их 2n), а в правой части – значения функции. Пример такого задания представлен в таблице 4.1.

Таблица 4.1

x1 x2 x3

f(x1, x2, x3)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

1

Для формирования столбца значений переменных удобен лексико-графический порядок, в соответствии с которым каждый последующий набор значений получается из предыдущего прибавлением 1 в двоичной системе счисления, например, 100 = 011+ 1.

Всего существует 22 различных булевых функций n переменных.

Функций одной переменной – 4. Из них выделим функцию “отрицание x”(обозначается x). Эта функция представлена в таблице 4.2.

Таблица 4.2

x

x

0

1

1

0

Булевых функций двух переменных – 16 (22 при n = 2). Те из них, которые имеют специальные названия, представлены в таблице 4.3.

Таблица 4.3

x1 x2

x1Vx2

x1& x2

x1 x2

x1~x2

x1 x2

x1¯ x2

x1ï x2

0 0

0 1

1 0

1 1

0

1

1

1

0

0

0

1

1

1

0

1

1

0

0

1

0

1

1

0

1

0

0

0

1

1

1

0

В таблице 4.3 представлены следующие функции двух переменных:

Характеристики

Тип файла
Документ
Размер
1,3 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Методичка по дискретной математике
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее