Физика Теория (1022628), страница 3
Текст из файла (страница 3)
2. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля от диска и круглого отверстия. Зонные пластинки. Характерные области дифракции света. Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера от щели. Дифракция Фраунгофера на системе щелей. Дифракционная решетка. Дифракционные спектры. Критерий разрешения Рэлея. Дисперсия и разрешающая способность решетки. Дифракция рентгеновских волн.
-
Дифракция света.
Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями, например, в близи границ прозрачных или непрозрачных тел, сквозь малые отверстия. Дифракция, в частности, приводит к огибанию световыми волнами препятствий, и проникновению света в область геометрической тени. Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в рез-тате суперпозиции волн. Перераспределение интенсивности, возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками, принято называть дифракцией волн. Поэтому говорят, например, об интерференционной картине от двух узких щелей и о дифракционной картине от одной щели. Различают два вида дифракции. Если источник S и точка наблюдения P расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р, образуют практически параллельные пучки, говорят о дифракции Фраунгофера (дифракции. в параллельных лучах). В противном случае говорят о дифракции Френеля.
-
Принцип Гюйгенса-Френеля.
Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Но этот принцип не дает сведений об амплитуде а следовательно и об интенсивности волн, распространившихся в различных направлениях. Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Согласно принципу Г-Ф каждый элемент волновой поверхности S служит источником вторичной волны, амплитуда которой пропорциональна величине элемента dS. Амплитуда сферической волны убывает с расстоянием по закону 1/r. След. от каждого участка dS волновой поверхности в точку Р, лежащую перед этой поверхностью, приходит колебание , где
- в месте расположения волновой поверхности S, к – волновое число. Множитель
определяется амплитудой светового колебания в том месте, где находится dS. К зависит от
между нормалью n к dS и направлением от dS к Р. При
=0, К – максимален, при
– он обращается в 0. Результирующее колебание в точке Р будет:
. Эта формула является аналитическим выражением принципа Г-Ф.
-
Метод зон Френеля.
Принцип Г- Ф. должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмотрев взаимную интерференцию вторичных волн и применив следующий прием:
Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника монохроматического света . Согласно принципу Г-Ф. заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся пов-тью фронта волны, идущей из
(пов-ть сферы радиуса R с центром S). Радиус выберем так, чтобы расстояние L от точки М до этой сферы (L=|OM|) было порядка R.
Разобьем поверхность S на небольшие по площади кольцевые участки – зоны Френеля. Колебания, возбуждаемые в точке М двумя соседними зонами , противоположны по фазе, т.к. разность хода от сходственных точек этих зон до точки М равна . След. амплитуда результирующих колебаний в точке М:
– амплитуда колебаний, возбуждаемых в точке М вторичными источниками. Величина
зависит от площади
i-той зоны и угла
между внешней нормалью к поверхности зоны в какой-либо ее точке и прямой, направленной из этой точки в точку М. Точки В и В’ соответствуют внешне границе i- той зоны. Общее число N зон Френеля, уменьшающихся на части сферы, обращенной к точке М велико:
. Например, если
. Радиус зоны определяется по формуле
.
-
Дифракция Френеля от диска и круглого отверстия.
15. Дифракция Френеля от круглого
отверстия и от диска.
1. От круглого отверстия.
Поставим на пути сферической световой волны (т.е. для которой А убывает как 1/r, r – расстояние,, отсчитываемое вдоль направления распространения световой волны) непрозрачный экран.
Расположим его так, чтобы перпендикуляр, опущенный из источника света S, попал в центр отверстия. На продолжении этого перпендикуляра возьмем точку Р. При радиусе отверстия
, значительно меньшем, чем указанные на рис. длины a и b, длину a можно считать равной расстоянию от источника S, до преграды, а длину b – от расстояния преграды до Р. Если расстояния а и b удовлетворяют соотношению:
, где m – целое число, то отверстие оставит открытым ровно m первых зон Френеля, построенных для точки Р. Следовательно, число открытых зон будет:
, а амплитуда в точке Р будет равна
знак минус берется, если m – нечетное и плюс – четное.
2. Дифракция от круглого диска.
Поместим между источником света S и точкой наблюдения Р непрозрачный диск радиуса . Если диск закроет m первых зон Френеля, амплитуда в точке Р будет равна:
.
-
Зонные пластинки.
Из теории Френеля (световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками, такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S). следует, что в том случае, когда в отверстии укладывается только одна зона Френеля, амплитуда колебаний в точке М
, т.е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (соответственно интенсивность в точкеM:
). Амплитуду А можно значительно увеличить с помощью зонной пластинки – стеклянной пластинки, на поверхность которой так нанесено непрозрачное покрытие, что оно закрывает все четные зоны Френеля и оставляет открытыми все нечетные зоны (либо наоборот). Если общее число зон, уменьшающихся на пластинке, равно 2k, то
. Если 2k не слишком велико, то
и A ≈ k
, т.е. освещенность экрана в точке М в k2 раз больше, чем при беспрепятственном распространении света от источника в точку М. Зонная пластинка действует на свет подобно собирающей линзе.
-
Характерные области дифракции света.
-
Дифракция в параллельных лучах (дифракция Фраунгофера).
-
Дифракция Фраунгофера от щели.
Б
есконечно длинную щель можно образовать, расположив ряжом две обращенные в разные стороны полуплоскости. Следовательно, задача и дифракции Френеля от щели может быть решена с помощью спирали Карню. Волновую поверхность падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу. Для точки Р, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точках спирали. Если сместиться в точку Р’, лежащую против края щели, начало результирующего вектора переместится в середину спирали О. Конец вектора переместится по спирали в направлении полюса F1.
При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг от друга (вектор, соответствующий точке Р’’). Интенсивность света при этом достигнет минимума. При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти. То же самое будет происходить при смещении из точки Р в противоположное сторону, так как дифракционная картина симметрична относительно середины щели. Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (а) и отличные от нуля минимумы (б).
-
Дифракция Фраунгофера на системе щелей.
-
Дифракционная решетка.
Дифракционной решеткой называется последовательность из большого числа N одинаковых параллельных щелей. Ширина каждой щели равна b, расстояние между соседними щелями, которое называется периодом решетки, равно d. Расположим параллельно решетке собирательную линзу, в фокальной плоскости которой поставим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину. Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью лишь тем, что все интенсивности выросли бы в N раз. Однако, колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от (
- интенсивность, создаваемая одной щелью). Предполагая, что радиус когерентности (максимальное поперечное направлению распространению волны расстояние, на котором возможно проявление интерференции) падающей волны намного превышает длину решетки. Так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результирующее колебание в точке Р представляет собой сумму N колебаний с одинаковыми амплитудами
, сдвинутых друг относительно друга по фазе на одну и ту же величину δ . Интенсивность при этих условиях равна:
, где
– интенсивность, создаваемая каждым из лучей в отдельности. Видно, что разность хода от соседних щелей равна
Следов, разность фаз
-
Дифракционные спектры.
Дифракционный спектр – Распределение интенсивности на экране, получаемое вследствие дифракции (это явление приведено на нижнем рис.). Основная часть световой энергии сосредоточена в центральном максимуме. Сужение щели приводит к тому, что центральный максимум расплывается, а его яркость уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире ( b > λ ), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При b >> λ в центре получается резкое изображение источника света, т.е. имеет мет прямолинейное распространение света. Эта картина будет иметь место только для монохроматического света. При освещении щели белым светом, центральный максимум будет иметь место белой полоски, он общий для всех длин волн (при = 0 разность хода равна нулю для всех λ ).
-
Критерий разрешения Рэлея.
Изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого. При выполнении критерии Релея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для раз- решения линий
.Если критерий Релея нарушен, то наблюдается одна линия.
-
Дифракция и разрешающая способность решетки.
Дифракционная картина на решетке определяется как р-тат взаимной интерференции волн, идущих от всех щелей. Т.е. в дифракционной. решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей. Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся на одинаковых друг от друга расстояниях, то разность хода лучей, идущих от двух соседних щелей, будут для данного направления одинаковы в пределах всей дифракционной решетки:
. Очевидно что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т.е. прежние минимумы интенсивности будут наблюдаться в направлениях, определяемых условием
. Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т.е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей
, посылаемых, например, от крайних левых точек М и С обеих щелей. Условие дополнительных минимумов:
. Наоборот, действие одной щели будет усиливать действие другой, если
т.е. условие максимумов. При двух щелях между двумя главными максимумами располагается один дополнительный минимум, а между каждыми главными максимумами при трех щелях располагается два дополнительных минимума, при четырех – три. Если дифракционная решетка состоит из N щелей, то условием главных минимумов является условие
, а условие главных максимумов -
а условием дополнительных минимумов
, где m' может принимать все целочисленные значения, кроме 0, N, 2N,…, т.е. тех, при которых dsinϕ = ±m'λ / N переходит в d sinϕ = ±mλ . Следовательно, в случае N щелей между двумя главными максимумами располагается N - 1дополнительных минимумов, разделенных вторичными максимумами. Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, след, более интенсивными и более острыми будут максимумы. Так как
не может быть больше 1, то m ≤ d /λ , т.е. число главных максимумов определяется отношением периода решетки к длине волны.